Sistem Kendali Multivariabel

ERWIN SUSANTO AGUNG SURYA

FAKULTAS TEKNIK ELEKTRO UNIVERSITAS TELKOM SEPTEMBER, 2017

KATA PENGANTAR

Bismillahirrohmaanirrohiim,

Segala puji hanya bagi Alloh Subhanallohu wa Ta'ala, karena berkat pertolongan dan kemudahan dari-Nya, kami dapat menyusun buku "Sistem Kendali Multivariabel" ini. Buku ini, terkhusus ditujukan bagi para mahasiswa/i yang berkeinginan untuk mempelajari teori maupun aplikasi teknik kendali sederhana terutama yang berkaitan dengan teknik ruang keadaan (*state space*) dan sistem dengan peubah (*variable*) banyak. Tentu saja, pengetahuan dasar matematika, fisika dan dasar-dasar teknik kendali diperlukan untuk memahami materi yang disajikan. Buku desain kendali ini disusun berdasarkan pengalaman mengajar tim penulis dalam mata kuliah peminatan Teknik Kendali di Program Studi Teknik Elektro, Universitas Telkom Bandung.

Secara garis besar, materi yang disajikan meliputi pengenalan sistem kendali secara umum, sejarah singkat perkembangan teknik kendali, kendali kalang terbuka (open - loop) dan kalang tertutup (closed - loop), pemodelan matematik suatu sistem fisik, desain kendali menggunakan ruang keadaan, umpan balik keadaan dan estimator keadaan beserta contoh-contoh aplikasinya.

Berikutnya, kami ingin mengucapkan terima kasih sebesar-besarnya kepada semua pihak, diantaranya Bagian Pembelajaran Universitas Telkom dan Fakultas Teknik Elektro yang telah memfasilitasi penulisan dan penyusunan, rekan pengajar bidang kendali yang telah memberikan saran dan pengayaan materi dan pihak-pihak yang tidak bisa kami sebutkan satu-persatu. Besar harapan kami, buku ini bermanfaat bagi pembaca sekalian terutama para mahasiswa/i yang belajar sistem kendali.

Akhir kata, komentar dan masukan yang membangun sangat diharapkan bagi penyempurnaan buku ini.

Bandung, 2017 Penyusun

Daftar Isi

1	\mathbf{Sek}	ilas Tentang Sistem Kendali	1
	1.1	Sejarah Singkat Perkembangan Teknik Kendali	2
	1.2	Sistem Kendali Dasar	5
		1.2.1 Kendali lup tertutup dan kendali lup terbuka	6
		1.2.2 Konfigurasi sistem umpan balik	8
	1.3	Soal Latihan	9
2	Mo	del Matematik	11
	2.1	Pendahuluan	11
	2.2	Rangkaian Listrik Dasar	13
	2.3	Sistem Mekanik Dasar	14
	2.4	Sistem Thermal Dasar	17
	2.5	Transformasi Laplace	20
	2.6	Soal Latihan	25
3	Rua	ang Keadaan (StateSpace)	31
	3.1	Gambaran Umum	31
	3.2	Keunggulan metode Ruang Keadaan	31
	3.3	Deskripsi Sistem	33
	3.4	Relasi Antara Ruang Keadaan dan Fungsi Alih	35
	3.5	Diagram Blok dan Ruang Keadaan	36

	3.6	Bentu	k Kanonik Ruang Keadaan	37
		3.6.1	Bentuk Kanonik Terkendali (<i>Controllable</i> canonical form)	38
		3.6.2	Bentuk Kanonik Teramati (Observable canonical form)	38
		3.6.3	Bentuk Kanonik Diagonal (<i>Diagonal canonical</i> form)	39
		3.6.4	Bentuk Kanonik Jordan (Jordan canonical form)	30
	27	Kotorl	rondelien (Controllability) den	59
	5.7	Keter	amatan (Observability)	40
		371	Keterkendelien (Controllability)	40
		3.7.1	Kotoramatan (Observability)	43
	38	Soal I	atihan	45
	J .0	JUAI L		40
4	Des	ain Ke	endali via Ruang Keadaan	47
	4.1	Pendahuluan		
	4.2	Desair	ı Aksi Kendali	48
		4.2.1	Kendali untuk sistem umpan balik keadaan pe-	
			nuh (full order state feedback) dengan masuk-	
			an acuan $(reference input)$	51
		4.2.2	Pemilihan Lokasi <i>Poles</i>	54
			4.2.2.1 Dominasi $Poles$ orde dua \ldots \ldots	54
			4.2.2.2 Kedudukan akar simetri (Symmetric Roc	bt
			Locus, SRL)	58
	4.3	Desair	n Estimator	60
		4.3.1	Estimator Orde Penuh (Full Order Estimator)	60
		4.3.2	Estimator Orde Terkurangi(Reduced Order	
			Estimator)	64
		4.3.3	Pemilihan lokasi <i>pole</i> estimator	66
	4.4	Desair	n Kompensator Kombinasi Kendali dan Estimator	69
		4.4.1	Pole-polekombinasi kendali dan estimator	71
		4.4.2	Fungsi alih kompensator	72
		4.4.3	Fungsi alih kompensator orde terkurang i $\ .\ .$.	73
	4.5	Soal L	atihan	74

5	Des	ain Ko	ompensator dengan Masukan Acuan	77
	5.1	Gamb	aran Umum	77
		5.1.1	Struktur pada Masukan Acuan	79
		5.1.2	Pemilihan Penguatan $(Gain)$	83
	5.2	Kenda	li Integral & Penjejakan Kokoh (Robust Tracking)	84
		5.2.1	Kendali Integral	84
		5.2.2	Penjejakan Kokoh	87
	5.3	Soal L	atihan	90
Da	aftar	Pusta	ka	93
La	mpir	an Ko	de Program	95
La	mpir	an So	lusi Soal Latihan	99

bab 1

Sekilas Tentang Sistem Kendali

Istilah sistem sering dijumpai di berbagai bidang ilmu baik yang eksakta maupun non-eksakta seperti ilmu teknik, ekonomi, manajemen ekologi, sosial, fisika dan kimia. Sistem sendiri merupakan gabungan dari berbagai komponen atau sistem yang lebih kecil (*sub system*) yang dapat melakukan aksi untuk sebuah tujuan tertentu. Sistem otomotif contohnya, tersusun atas banyak sub-sistem pendukung seperti sistem pengemudian (*electronic power steering*), pengereman (*auto breaking system*), suspensi, pendingin mesin penggerak, sistem pelumasan dan lain-lain.

Secara umum, sistem kendali dapat dipandang sebagai hubungan berbagai komponen, seperti elektrik, mekanik, hidrolik bahkan parameter dan variabel sosial, biologi, keuangan dengan tujuan mendapatkan fungsi yang diinginkan secara efisien dan akurat. Karena kemajuan dalam teori dan aplikasi kendali otomatik menawarkan kinerja yang optimal bagi suatu sistem dinamik, meningkatkan produktifitas, menyederhanakan operasi manual yang seringkali berulang-ulang maka banyak insinyur dan ilmuwan dewasa ini tertarik untuk menekuni bidang ilmu teknik kendali sehingga telah banyak yang memiliki pemahaman yang baik tentang kendali otomatik.

Gambar 1.1: Sistem Otomotif

Beberapa contoh aplikasi kendali otomatik yang berkaitan dengan industri dan teknologi, misalnya kendali numerik pada peralatan permesinan, sistem otopilot pada industri pesawat terbang, industri otomotif, kendali pada industri proses seperti pengaturan tekanan, temperatur, kelembaban dan kekentalan cairan.

1.1 Sejarah Singkat Perkembangan Teknik Kendali

Ide pemanfaatan kendali otomatis, pertama kali dilakukan oleh James Watt (1736 -1819) dengan menciptakan alat pengatur sentrifugal yang berfungsi mengendalikan putaran mesin uap pada abad ke 18. Temuan James Watt ini mengembangkan mesin uap yang telah dibuat sebelumnya oleh Thomas Savery (1650-1715) dan Thomas Newcomen (1663-1729). Berbeda dengan karya ilmuwan sebelumnya, James Watt telah memperkenalkan metode dan instrumen pengaturan putaran pada mesin uapnya.

Kemudian, pengembangan teori kendali otomatik diawali oleh beberapa ilmuwan seperti Minorsky (1922) dengan kendali otomatis pengemudian kapal sekaligus berhasil menjelaskan stabilitas sistem berdasarkan persamaan differensial, Nyquist (1932) yang mengembangkan prosedur sederhana untuk menjelaskan kestabilan sistem lup tertu-

Gambar 1.2: Pergerakan Pesawat

tup berbasis tanggapan lup terbuka untuk masukan sinusoida kondisi ajek (*steady state*), dan Hazen (1934) yang mengenalkan istilah servomekanik untuk sistem kendali posisi dan desain rele servomekanis dengan kemampuan mengikuti perubahan masukan.

Selama dekade 1940-an, metode respon frekuensi dan Bode diagram telah digunakan untuk analisa dan desain sistem kendali lup tertutup linier. Diakhir 1940-an dan diawal 1950-an, metode kedudukan akar (*root locus*) telah dikembangkan oleh Evans. Kedua metode respons frekuensi dan kedudukan akar ini merupakan teori kendali klasik yang banyak digunakan untuk memenuhi kebutuhan kinerja dan kestabilan sistem.

Seiring waktu, permasalahan dinamika sistem menjadi semakin kompleks dengan melibatkan banyak masukan dan banyak keluaran (*multi input-multi output*) sehingga membutuhkan banyak persamaan dan model matematik yang rumit. Hal ini menjadikan analisa dan desain menggunakan teori kendali klasik yang hanya sesuai untuk sistem sederhana dengan satu masukan satu keluaran (*single input-single*

aliran fluida

Gambar 1.3: Skema mesin uap sederhana

output) tidak lagi memadai. Sejak tahun 1960, keberadaan teknologi digital turut berperan bagi perkembangan teknologi kendali otomatik. Analisa sistem yang kompleks, teori kendali modern berbasis analisa dan sintesa domain waktu menggunakan peubah keadaan (*state variables*) telah digunakan untuk mengatasi kompleksitas sistem modern dan meningkatkan akurasi analisa dan sintesa sistem kendali.

Selama kurun 1960-1980, kendali optimal untuk sistem yang deterministik maupun stokastik, penelitian tentang kendali adaptif dan sistem cerdas telah dikembangkan. Selanjutnya sejak tahun 1980 metode kendali kokoh yang mempertimbangkan ketidakpastian yang disebabkan oleh gangguan, kesalahan pemodelan dan perubahan sistem juga telah diteliti dan dikembangkan. Dewasa ini, aplikasi sistem dan teknik kendali bukan hanya digunakan dalam bidang rekayasa teknik, melainkan telah dimanfaatkan untuk memecahkan berbagai persoalan di bidang biologi, biomedis, ekonomi, sosio-ekonomi dan sebagainya.

1.2 Sistem Kendali Dasar

Sebelum kita mendiskusikan sistem kendali, beberapa istilah dasar berikut perlu dijelaskan, berikut ini:

- Peubah terkendali (*controlled variable*) dan peubah termanipulasi (*manipulated variable*). Peubah terkendali merupakan kuantitas ataupun kondisi yang diukur dan dikendalikan. Adapun peubah termanipulasi merupakan kuantitas atau kondisi yang diubah oleh kendali (*controller*) sehingga dapat mempengaruhi nilai peubah terkendali, yang biasanya merupakan keluaran sistem.
- *Plant*. Sebuah plant dapat berupa peralatan dan instrumen yang difungsikan sebagai bagian dari sistem yang dikendalikan. Contoh plant misalkan peralatan mekanik, tungku bakar, reaktor kimia, pesawat luar angkasa dan sebagainya
- Proses. Berbeda dengan plant, sebuah proses merupakan prosedur dan mekanisme yang dikendalikan sama seperti pada plant. Kendali sistem pemisahan cairan kimia, kolom distilasi merupakan sistem kendali yang bekerja pada sebuah proses.
- Sistem. Semua komponen yang berhubungan dan memiliki tujuan tertentu, termasuk efisiensi, otomasi dan optimasi akan membentuk sebuah sistem
- Gangguan (disturbance). Pada sistem riil, gangguan hampir selalu dijumpai dan seringkali berpengaruh pada stabilitas dan kinerja sistem. Gangguan ini dapat disebabkan oleh sistem itu sendiri (internal disturbance) maupun gangguan luar sistem (eksternal disturbance). Gangguan dapat berupa perubahan parameter sistem karena pengoperasian dan kelelahan (fatigue) maupun gangguan sinyal interferensi pengaruh lingkungan dan alam seperti perubahan cuaca, petir dan sebagainya

• Kendali Umpan Balik (*feedback control*). Adanya ganggguan, memunculkan perbedaan antara keluaran dengan masukan acuan yang sulit diprediksi mengakibatkan tujuan pengoperasian sebuah sistem tidak tercapai. Untuk itu, diperlukan umpan balik keluaran untuk dibandingkan dengan masukan acuan sehingga selisih perbedaan dapat dikendalikan, diminimalkan secara otomatis

Karakteristik dan dinamika sistem seringkali dapat dituliskan dalam bentuk persamaan diferensial berbagai sistem kompleks seperti pada sistem mekanik, elektrik, elektromekanik dapat dideskripsikan sebagai peubah keadaan posisi, kecepatan, tegangan kapasitor dan arus induktor. Dengan demikian, dinamika gerak suatu sistem dapat dituliskan dalam bentuk persamaan diferensial.

Sebagai contoh ilustrasi, perhatikan sistem pada Gambar 1.4 dibawah ini, dengan mengaplikasikan hukum Newton tentang gerak,

$$u - b\dot{x} = m\ddot{x} \tag{1.1}$$

Dengan mendefinisikan peubah keadaan berikut,

$$x = x_1, \dot{x} = \dot{x}_1 = x_2 \tag{1.2}$$

maka deskripsi sistem dalam persamaan diferensial akan dapat dilakukan. Selanjutnya, ruang keadaan (*state space*) juga dengan mudah dideskripsikan.

1.2.1 Kendali lup tertutup dan kendali lup terbuka

Kendali umpan balik ($feedback \ control$) merupakan sistem kendali lup tertutup. Sistem ini menjaga koneksi masukan dan keluaran dengan membandingkannya dan menggunakannya sebagai sinyal kendali. Sebagai contoh, sistem pengatur temperatur ruangan yang menjaga suhu secara kontinyu pada nilai tertentu, 19^0 C misalnya. Jika suhu meningkat, maka fan pendingin akan bekerja dan jika suhu turun maka fan pendingin akan berhenti.

Gambar 1.4: Gerak Kendaraan dan Diagram Badan Bebasnya

Sistem kendali umpan balik tidak hanya dijumpai pada bidang teknik saja, melainkan pada bidang-bidang non teknik seperti pada sistem biologi kekebalan tubuh manusia terhadap gangguan seperti virus dan bakteri penyakit. Adapun sistem kendali lup terbuka, karena tidak ada umpan balik maka keluaran sistem tidak berpengaruh pada aksi kendali. Atau dengan kata lain masukan acuan bersifat tetap sehingga kinerjanya tergantung pada penyetelan secara manual, dan memerlukan kalibrasi lebih sering. Contoh sistem lup terbuka adalah *fruit juicer*, dimana kita bisa membuat jus buah dengan menekan tombol untuk mengaktifkan motor listrik dengan beberapa pilihan kecepatan putaran. Disini, motor listrik pada *juicer* tidak bisa secara otomatis mengubah putarannya karena perbedaan tekstur buah misalnya, tanpa kita pilih terlebih dulu.

Gambar 1.5: Sistem Kendali Lup Terbuka dan Tertutup

1.2.2 Konfigurasi sistem umpan balik

Untuk memahami dan menganalisa sistem umpan balik yang merupakan sistem kendali lup tertutup seperti pada Gambar 1.5, perlu diperhatikan simbol yang dipakai untuk setiap peubah pada blok diagram berikut ini:

Pada ekuivalen konfigurasi umpan balik Gambar 1.6 diatas, plant controller /kompensator maju direpresentasikan sebagai sebuah pemetaan input output (IO map) ϕ , sedangkan kompensator balik atau sensor memiliki (IO map) ψ . Sistem umpan balik ditampilkan dalam bentuk

$$y = \phi(e) \tag{1.3}$$

$$e = r - \psi(y) \tag{1.4}$$

Sehingga sinyal kesalahan (error) memenuhi

$$e = r - \psi(\phi(e)) \tag{1.5}$$

$$e + \gamma(e) = r \tag{1.6}$$

dimana $\gamma=\psi\,o\,\phi$ merupakan IO map dari plant dengan kompensator balik dan biasa disebut lup peta IO (loop IO map)

Gambar 1.6: Konfigurasi umpan balik dan ekuivalennya

1.3 Soal Latihan

- 1. Sebutkan 3 aplikasi sistem kendali lup terbuka yang mudah anda jumpai, buatlah diagram blok sederhana yang menggambarkan cara kerja sistem tersebut
- 2. Sebutkan 3 aplikasi sistem kendali lup tertutup yang mudah anda jumpai, buatlah diagram blok sederhana yang menggambarkan cara kerja sistem tersebut
- 3. Anggaplah kita memiliki tandon penyimpan air yang perlu diisi air secara otomatis dan kontinyu. Desainlah sistem pengisi air otomatis. Klasifikasikan instrumen dan peralatan yang digunakan, termasuk peubah terkendali, peubah termanipulasi, masukan dan keluaran sistem selengkap mungkin. Lengkapi pula dengan diagram blok.

4. Ilustrasikan sistem pengendalian anggaran dalam bentuk diagram blok dengan melibatkan komponen-komponen fiskal seperti pajak, ekspor impor, hasil sumber daya alam, pembayaran hutang dan lain-lain

вав 2

Model Matematik

2.1 Pendahuluan

Seringkali, perilaku dinamik suatu sistem fisik perlu untuk ditampilkan dalam bentuk model persamaan matematik. Model ini diperoleh dari karakteristik komponen sistem, seperti masa suatu sistem mekanik, resistansi sistem elektrik dan sebagainya. Atau juga bisa diperoleh dari pengukuran dan eksperimen untuk mengetahui relasi masukan dan tanggapan sebuah sistem misalnya. Untuk memulai belajar sistem kendali, dibutuhkan kemampuan untuk memodelkan sistem dinamik dan menganalisa karakteristik dinamik sistem tersebut. Ketika model matematik sebuah sistem diketahui, maka berbagai analisa dan tool komputasi dengan komputer dapat disimulasikan sehingga analisa sistem dapat dilakukan secara terstruktur dan lebih mudah.

Model matematika sebuah sistem dinamik merupakan sekumpulan persamaan matematik yang merepresentasikan sistem secara akurat, paling tidak mendekati dengan keadaan sesungguhnya dari sebuah sistem. Perlu diingat bahwa seringkali model matematik yang diperoleh dari sebuah sistem fisik tidak selalu unik, artinya seringkali lebih dari satu model matematik. Hal ini disebabkan oleh persepsi seorang insinyur matematika atau kendali dapat berbeda pendekatannya, termasuk cara pengukuran maupun asumsi yang digunakan. Pada banyak kasus, dinamika sistem baik fisik seperti elektrik, mekanik, termal maupun non fisik seperti biologi, sosial, keuangan dapat dituliskan dalam bentuk persamaan diferensial. Sebagai contoh, hukum Newton dapat digunakan untuk menjelaskan model matematik sebuah sistem mekanik dan hukum Kirchoff digunakan untuk pemodelan sistem elektrik.

Asumsi yang digunakan pada pemodelan matematik menghasilkan bentuk persamaan yang berbeda, tergantung kekhususan, permasalahan dan metode kendali yang digunakan. Sebagai contoh, model ruang keadaan (*state space*) lebih disukai untuk menyelesaikan persoalan metode kendali optimal sistem MIMO (*multi input multi output*) sedangkan untuk permasalahan analisa transient dan tanggapan frekuensi pada sistem linier tak varian SISO (*single input single output*) maka model fungsi alih lebih sesuai.

Sebuah sistem dikatakan linier jika memenuhi prinsip superposisi, dimana sistem dengan masukan yang berbeda akan menghasilkan keluaran yang berbeda dan jika beberapa masukan tersebut secara bersamaan diaplikasikan akan menghasilkan keluaran yang merupakan penjumlahan dari masing-masing sistem untuk masukan yang berbeda tersebut. Anggaplah sebuah sistem y = f(x), untuk masukan $x_1, x_2, ..., x_n$ menghasilkan $y_1 = f(x_1), y_2 = f(x_2), ..., y_n = f(x_n)$, dimana $y_1 + y_2 + \ldots + y_n = f(x_1 + x_2 + \ldots + x_n)$. Pada kasus eksperimen dan pengukuran, jika sebab dan pengaruhnya proporsional, sistem juga dikatakan linier. Kemudian suatu persamaan diferensial dikatakan linier jika koefisien-koefisiennya merupakan konstanta atau berupa peubah yang bebas. Jika sistem dideskripsikan dengan persamaan diferensial dengan koefisien yang berubah terhadap waktu, maka dikatakan sistem yang berubah waktu (*time varying*), sebaliknya yang tidak tergantung waktu disebut *time invariant*. Pada buku ini, kita fokuskan pada sistem yang linier dan time invariant (linear time invariant, LTI). Disini akan disebutkan beberapa model matematik dari sistem elektrik, mekanik, termal sebagai berikut:

2.2 Rangkaian Listrik Dasar

Model matematik untuk rangkaian listrik dasar umumnya akan berkaitan dengan komponen resistor R, induktor L dan kapasitor C. Untuk komponen resistif, berlaku persamaan tegangan listrik berikut

Gambar 2.1: Skema dari resistor, induktor dan kapasitor

$$v_1(t) - v_2(t) = Ri(t) \tag{2.1}$$

Untuk komponen induktif,

$$v_1(t) - v_2(t) = L \frac{d}{dt} i(t)$$
 (2.2)

Sedangkan untuk komponen kapasitif

$$v_1(t) - v_2(t) = \frac{1}{C} \int i(t)dt$$
 (2.3)

Untuk lebih jelasnya, beberapa contoh permasalahan rangkaian listrik diuraikan disini. Sebuah rangkaian RC pada gambar 2.2 dibawah memiliki persamaan differensial sebagai berikut:

$$v_1(t) - v_2(t) = Ri(t) \tag{2.4}$$

$$v_2(t) = \frac{1}{C} \int i(t)dt \tag{2.5}$$

Gambar 2.2: Rangkaian RC

Sehingga diperoleh persamaan diferensial orde satu berikut:

$$RC\frac{dv_2(t)}{dt} + v_2(t) = v_1(t)$$
(2.6)

Contoh lain, sebuah rangkaian RLC dapat diuraikan dalam beberapa persamaan berikut:

$$v_1(t) - v_2(t) = Ri(t) + L \frac{d}{dt}i(t)$$
 (2.7)

$$v_2(t) = \frac{1}{C} \int i(t)dt \tag{2.8}$$

Maka diperoleh persamaan differensial orde dua relasi masukan keluaran, berikut ini:

$$LC\frac{d^2v_2(t)}{dt^2} + RC\frac{dv_2(t)}{dt} + v_2(t) = v_1(t)$$
(2.9)

2.3 Sistem Mekanik Dasar

Model matematik sistem mekanik pada suatu benda didasarkan pada karakteristik elastisitas, redaman dan massa. Persamaan gaya elastisitas (bayangkan pegas yang memiliki kelenturan dan elastisitas) translasi dan torsi elastisitas rotasi, dituliskan berikut ini:

$$P(t) = K(x_i(t) - x_o(t))$$
(2.10)

$$T(t) = K(\theta_i(t) - \theta_o(t))$$
(2.11)

Gambar 2.3: Rangkaian RLC

Gambar 2.4: Elastisitas linier: translasi dan rotasional

Besar gaya redaman atau torsi mekanik pada sebuah benda sebanding dengan kecepatan. Persamaan gaya redaman translasi dan torsi redaman rotasi dituliskan sebagai berikut:

$$P(t) = C\frac{dx_o(t)}{dt} = Cv(t)$$
(2.12)

$$T(t) = C \frac{d\theta_o(t)}{dt} = C\omega(t)$$
(2.13)

Kemudian, gaya yang bekerja pada suatu benda akan sebanding de-

Gambar 2.5: Redaman linier

ngan perkalian massa dan percepatan, sedangkan torsi rotasi akan sebanding dengan perkalian momen inersia dan percepatan anguler. Untuk gaya translasi dan torsi rotasi masing-masing dirumuskan:

$$P(t) = ma(t) = m\frac{dv(t)}{dt}$$
(2.14)

$$T(t) = I \frac{d\omega(t)}{dt} = I\alpha(t)$$
(2.15)

Berikut adalah contoh persoalan pemodelan pada sistem massa-redamanpegas (*mass damper spring system*) dengan diagram *free-body*nya yang bergerak translasi seperti yang digambarkan dibawah ini:

$$\Sigma F(t) = ma(t) \qquad (2.16)$$

$$K(x_i(t) - x_o(t)) - C\frac{dx_o(t)}{dt} = m\frac{dx_o(t)}{dt}$$
(2.17)

$$m\frac{d^2x_o(t)}{dt^2} + C\frac{dx_o(t)}{dt} + Kx_o(t) = Kx_i(t)$$
(2.18)

Adapun contoh persoalan gerak rotasi, dijelaskan sebagai berikut. Sebuah roda gila dengan momen inersia I, terletak pada bantalan yang

Gambar 2.6: Massa linier: percepatan translasi dan percepatan anguler

menghasilkan momen gesekan sebesarCkali kecepatan anguler poros $\omega({\rm t}).$ Persamaan yang berlaku:

$$\Sigma M = I\alpha(t) \tag{2.19}$$

$$T(t) - C\omega(t) = I \frac{d\omega(t)}{dt}$$
(2.20)

$$I\frac{d\omega(t)}{dt} + C\omega(t) = T(t) \qquad (2.21)$$

2.4 Sistem Thermal Dasar

Model persamaan sistem thermal dapat dianalogikan dengan sistem elektrik, yakni memiliki karakteristik resistif dan kapasitif. Aliran

Gambar 2.7: Sistem massa-redaman-pegas dan diagram free-bodynya

panas melalui proses konduksi diturunkan dari hukum Fourier

$$Q_T = \frac{KA(\theta_1 - \theta_2)}{l} \tag{2.22}$$

dimana Q_T adalah aliran panas dalam Watt, K konduktifitas thermal dalam Watt/meter Kelvin, $(\theta_1 - \theta_2)$ merupakan selisih temperatur dalam Kelvin, A adalah area tegak lurus aliran panas dalam $meter^2$ dan l adalah ketebalan konduktor dalam meter.

Adapun selisih temperatur menurut hukum Ohm merupakan perkalian resistansi thermal dengan aliran panas

$$(\theta_1 - \theta_2) = Q_T R_T \tag{2.23}$$

dengan resistansi thermal

$$R_T = \frac{l}{KA} \tag{2.24}$$

Panas yang tersimpan dirumuskan

$$H_T(t) = mC_P\theta(t) \tag{2.25}$$

Gambar 2.8: Roda gila pada bantalan

dimana H_T adalah panas tersimpan (Joule), m adalah massa dalam kg, C_P adalah panas tertentu untuk tekanan konstan dan θ merupakan perubahan temperatur dalam Kelvin.

Jika persamaan diatas dibandingkan dengan elektrostatis

$$Q(t) = Cv(t) \tag{2.26}$$

maka diperoleh kapasitansi thermal

$$C_T = mC_P \tag{2.27}$$

Turunan panas tersimpan H_T merupakan aliran panas Q_T

$$\frac{dH_T(t)}{dt} = mC_P \frac{\theta(t)}{dt}$$
(2.28)

$$Q_T = C_T \frac{d\theta(t)}{dt} \tag{2.29}$$

Untuk contoh pemodelan pada sistem thermal, sebuah sumber panas dengan temperatur θ_1 mengalirkan panas melalui sebuah dinding dengan resistansi ideal R_T menuju pendingin (*heat sink*) dengan kapasitansi thermal idela C_T dan temperatur θ_2 . Tentukan persamaan

Gambar 2.9: Sistem perpindahan panas

selisih temperatur $(\theta_1 - \theta_2)$ Pada dinding, berlaku

$$Q_T(t) = \frac{(\theta_1(t) - \theta_2(t))}{R_T}$$
(2.30)

Pada *heat sink*, berlaku:

$$Q_T(t) = C_T \frac{d\theta_2(t)}{dt}$$
(2.31)

Dengan demikian

$$\frac{\left(\theta_1(t) - \theta_2(t)\right)}{R_T} = C_T \frac{d\theta_2(t)}{dt}$$
(2.32)

$$R_T C_T \frac{d\theta_2}{dt} + \theta_2 = \theta_1 \tag{2.33}$$

2.5 Transformasi Laplace

Untuk menyelesaikan persamaan diferensial linier, transformasi Laplace dapat digunakan. Banyak fungsi dasar seperti fungsi sinusoida, eksponensial, sinusoida teredam dan sebagainya yang dapat diubah dalam bentuk peubah kompleks *s*, termasuk operator integral dan diferensial yang juga dapat diubah dalam operasi aljabar dalam bidang

kompleks. Dengan transformasi Laplace, kita dapat memperkirakan performansi sistem seperti respon keadaan mantap (*steady state*) maupun *transient* tanpa perlu menyelesaikan persamaan diferensialnya.

Sebelumnya, perlu kita definisikan pengertian peubah kompleks s yang memiliki bagian riil dan imajiner berikut:

$$s = \sigma + j\omega \tag{2.34}$$

Sedangkan fungsi kompleks memiliki bentuk berikut:

$$G(s) = G_x + jG_y \tag{2.35}$$

dimana magnitudo atau besar $G(s) = \sqrt{G_x^2 + G_y^2}$ dan sudut fasa fungsi kompleks tersebut $\theta = tan^{-1} \frac{G_y}{G_x}$. Kemudian *complex conjugate*-nya $G^*(s) = G_x - jG_y$.

Transformasi Laplace suatu fungsi domain waktu f(t) dengan f(t)=0untukt<0 dituliskan dalam persamaan dibawah ini

$$\mathcal{L}(f(t)) = F(s) = \int_0^\infty f(t)e^{-st}dt \qquad (2.36)$$

Sedangkan invers transformasi Laplace, didefinisikan

$$\mathcal{L}^{-1}(F(s)) = f(t) = \frac{1}{2\pi j} \int_{c-\infty}^{c+\infty} F(s)e^{-st}ds, t > 0 \quad (2.37)$$

Beberapa contoh berikut, transformasi Laplace untuk fungsi yang umum dijumpai

1. Unit step, f(t) = 0, untuk t < 0 dan f(t) = A, untuk t > 0 maka

$$\mathcal{L}(A) = F(s) = \int_0^\infty A e^{-st} dt = \frac{A}{s}$$
(2.38)

2. Eksponensial, f(t) = 0, untuk t < 0 dan $f(t) = Ae^{-at}$, untuk t > 0 maka

$$\mathcal{L}(Ae^{at}) = F(s) = \int_0^\infty Ae^{-at}e^{-st}dt = \int_0^\infty e^{-(s+a)t}dt = A(2.39) \frac{A}{s+a}$$

3. Ramp, f(t)=0,untuk t<0dan f(t)=At,untuk t>0maka

$$\mathcal{L}(At) = F(s) = \int_0^\infty At e^{-st} dt = \frac{A}{s} \int_0^\infty e^{-st} dt = \frac{A}{s^2} (2.40)$$

4. Sinusoidal, f(t) = 0, untuk t < 0 dan $f(t) = A \sin \omega t$, untuk $t \ge 0$ maka kita dapat memanfaatkan persamaan Euler berikut

$$\sin \omega t = \frac{1}{2j} (e^{j\omega t} + e^{-j\omega t})$$
 (2.41)

$$\cos \omega t = \frac{1}{2} (e^{j\omega t} - e^{-j\omega t}) \qquad (2.42)$$

$$\mathcal{L}(A \sin \omega t) = F(s) = \frac{A}{2j} \int_0^\infty (e^{j\omega t} - e^{-j\omega t}) dt \quad (2.43)$$

$$= \frac{A}{2j}\frac{1}{s-j\omega} - \frac{A}{2j}\frac{1}{s+j\omega} = \frac{A\omega}{s^2+\omega^2} (2.44)$$

Dengan cara yang sama, untuk $f(t) = A \cos \omega t$, diperoleh

$$\mathcal{L}(A \cos \omega t) = \frac{As}{s^2 + \omega^2} \tag{2.45}$$

Tabel 2.1 berikut merangkum transformasi Laplace dan inversnya untuk beberapa fungsi umum lainnya

Transformasi Laplace untuk persamaan diferensial, dirumuskan berikut ini:

$$\mathcal{L}(\frac{d^n f(t)}{dt^n}) = s^n F(s) - s^{n-1} f(0) - s^{(n-2)} f'(0) - \dots s f^{(n-2)'}(\mathbf{D}, 46)$$

Adapun transformasi Laplace untuk fungsi integral dirumuskan berikut:

$$\mathcal{L}(\int f(t)dt) = \frac{F(s)}{s} \tag{2.47}$$

	f(t)	F(s)
1	Unit impulse $\delta(t)$	1
2	Unit step $1(t)$	$\frac{1}{s}$
3	t	$\frac{1}{s^2}$
4	$\frac{t^{n-1}}{(n-1)!} \qquad (n=1,2,3,\dots)$	$\frac{1}{s^{*}}$
5	t^{n} (<i>n</i> = 1, 2, 3,)	$\frac{n!}{s^{n+1}}$
6	e~*	$\frac{1}{s+a}$
7	te ^{-ar}	$\frac{1}{(s+a)^2}$
8	$\frac{1}{(n-1)!}t^{n-1}e^{-at} \qquad (n=1,2,3,\dots)$	$\frac{1}{(s+a)^n}$
9.	$t^{n}e^{-nt}$ $(n = 1, 2, 3,)$	$\frac{n!}{(s+a)^{n+1}}$
10	sin or	$\frac{\omega}{s^2+\omega^2}$
11	C08 wl	$\frac{s}{s^2 + \omega^2}$
12	sinh or	$\frac{\omega}{s^2-\omega^2}$
13	cosh or	$\frac{s}{s^2-\omega^2}$
14	$\frac{1}{a}(1-e^{-at})$	$\frac{1}{s(s+a)}$
15	$\frac{1}{b-a}\left(e^{-st}-e^{-bt}\right)$	$\frac{1}{(s+a)(s+b)}$
16	$\frac{1}{b-a}(be^{-ba}-ae^{-ba})$	$\frac{s}{(s+a)(s+b)}$
17	$\frac{1}{ab}\left[1+\frac{1}{a-b}\left(be^{-a}-ae^{-bt}\right)\right]$	$\frac{1}{s(s+a)(s+b)}$

18	$\frac{1}{a^2}(1 - e^{-at} - ate^{-at})$	$\frac{1}{s(s+a)^2}$
19	$\frac{1}{a^2}(at-1+e^{-\alpha})$	$\frac{1}{s^2(s+a)}$
20	e ^{−#} sin ωf	$\frac{\omega}{(s+a)^2+\omega^2}$
21	e^{-w} CDS cal	$\frac{s+a}{(s+a)^2+\omega^2}$
22	$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\omega_n\sqrt{1-\zeta^2}t (0<\zeta<1)$	$\frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$
23	$-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_s}\sin(\omega_s\sqrt{1-\zeta^2}t-\phi)$ $\phi = \tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta}$ $(0 < \zeta < 1, 0 < \phi < \pi/2)$	$\frac{s}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
24	$1 - \frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_n \sqrt{1-\zeta^2}t + \phi)$ $\phi = \tan^{-1} \frac{\sqrt{1-\zeta^2}}{\zeta}$ $(0 < \zeta < 1, 0 < \phi < \pi/2)$	$\frac{\omega_n^2}{s(s^2+2\zeta\omega_n s+\omega_n^2)}$
25	$1 - \cos \omega t$	$\frac{\omega^2}{s(s^2 + \omega^2)}$
26	$\omega t - \sin \omega t$	$\frac{\omega^3}{s^2(s^2+\omega^2)}$
27	$\sin \omega t = \omega t \cos \omega t$	$\frac{2\omega^3}{(s^2+\omega^2)^2}$
28	$\frac{1}{2\omega}t\sin\omega t$	$\frac{s}{(s^2 + \omega^2)^2}$
29	f COS col	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$
30	$\frac{1}{\omega_2^2 - \omega_1^2} \left(\cos \omega_1 t - \cos \omega_2 t \right) \qquad \left(\omega_1^2 \neq \omega_2^2 \right)$	$\frac{s}{(s^2 + \omega_1^2)(s^2 + \omega_2^2)}$
31	$\frac{1}{2\omega}(\sin \omega t + \omega t \cos \omega t)$	$\frac{s^2}{\left(s^2+\omega^2\right)^2}$

Tabel 2.1: Transformasi Laplace

Gambar 2.10: Rangkaian RLC

2.6 Soal Latihan

- 1. Pada rangkaian elektrik (Gambar 2.10) berikut ini.
 - (a) Tentukan persamaan differensial yang merepresentasikan relasi masukan-keluaran.
 - (b) Tentukan pula fungsi alih $\frac{Y(s)}{U(s)}$ dengan memanfaatkan transformasi Laplace dan fungsi keluaran dalam domain waktu kontinyu jika nilai $R = 2 \ ohm, \ L = 1H \ dan \ C = 1F$
- 2. Untuk relasi masukan keluaran pada sistem massa-redaman-pegas (Gambar 2.11) berikut,
 - (a) Tentukan persamaan differensialnya jika m, k, c masing-masing adalah massa, konstanta pegas dan konstanta redaman, u, x adalah gaya yang bekerja dan posisi sistem.
 - (b) Tentukan pula fungsi alih dengan memanfaatkan transformasi Laplace dan fungsi keluaran dalam domain waktu kontinyu.
- 3. Sebuah oven penggoreng dipanaskan dengan tungku secara elektrik (Gambar 2.12).

Gambar 2.11: Sistem mekanik

Gambar 2.12: Sistem perpindahan panas, tungku dan oven

Parameter yang diketahui adalah v_1 adalah tegangan pengoperasian tungku, Q_i, θ_o, θ_s masing-masing adalah panas masukan, temperatur oven dan temperatur sekitar. Adapun K, R_T, C_T masing-masing adalah konstanta tungku, resistansi thermal dan kapasitansi thermal.

- (a) Tentukan persamaan differensial yang merepresentasikan selisih temperatur pada sistem ini.
- (b) Tentukan pula fungsi alihnya dengan memanfaatkan transformasi Laplace dan fungsi keluaran dalam domain waktu kontinyu.

4. Suatu rangkaian elektrik (Gambar 2.13) dibawah ini:

Gambar 2.13: Rangkaian elektrik

- (a) Carilah persamaan diferensial yang merepresentasikan model fisik rangkaian diatas.
- (b) Tentukan pula fungsi alihnya dengan memanfaatkan transformasi Laplace
- (c) dan fungsi keluaran dalam domain waktu kontinyu untuk $R_1=R_2=1, C_1=C_2=1$
- 5. Suatu sistem mekanik (Gambar 2.14) dibawah ini:
 - (a) Carilah persamaan diferensial yang merepresentasikan model fisik sistem mekanik tersebut.
 - (b) Bagaimanakah persamaan fungsi alih yang merepresentasikan relasi masukan keluaran dalam domain s (Laplace) dan fungsi keluaran dalam domain waktu kontinyu jika massa *cart* diabaikan.
- 6. Sebuah rangkaian elektrik (Gambar 2.15) dibawah ini,
 - (a) Tulislah persamaan tegangan masukan dan keluarannya
 - (b) Susunlah persamaan ruang keadaannya (state space) dengan mendefinisikan peubah keadaan $x_1 = \int i \, dt, x_2 = \dot{x}_1$

Gambar 2.14: Sistem mekanik

- (c) Dengan transformasi Laplace, tentukan fungsi alihnya
- (d) Realisasikan dengan komputer analog yang memuat integrator

Gambar 2.15: Sistem RLC
bab 3

Ruang Keadaan (*StateSpace*)

3.1 Gambaran Umum

Penjelasan mengenai metode peubah keadaan (*state variable*) seringkali diturunkan berdasarkan persamaan differensial. Pada desain ruang keadaan (*state space*), seorang insinyur kendali akan merancang suatu kompensator dinamis, biasa juga disebut dengan kontroler atau pengendali secara langsung berdasarkan deskripsi peubah keadaan dari sebuah sistem yang dimaksud. Kontroler atau pengendali tersebut dapat dilihat pada gambar 3.1, yakni blok D(s) yang memenuhi spesifikasi desain yang diinginkan. Karena kemudahan dan kesesuaiannya dengan perhitungan menggunakan komputer, sampai saat ini metode ruang keadaan banyak dipelajari dan digunakan oleh para insinyur kendali.

3.2 Keunggulan metode Ruang Keadaan

Telah disebutkan sebelumnya, bahwa ide dari metode ruang keadaan ini bermula dari persamaan diferensial, yang mengacu pada dinamika sebuah sistem yang akan dikendalikan. Kemudian, persamaan diferen-

Gambar 3.1: Blok Diagram Sistem Kendali

sia (*ordinary differential equations*, *ODE*) ini dapat dimanipulasi dan diubah kedalam bentuk persamaan ruang keadaan. Keunggulan metode ruang keadaan, diantaranya:

- Dibandingkan dengan persamaan diferensial untuk menggambarkan dinamika sistem, metode ruang keadaan dapat lebih mudah mengakomodir sistem dengan masukan jamak keluaran jamak (*multi input - multi output*, *MIMO*)
- Mengenalkan ide geometri ke dalam persamaan differensial. Pada ilmu fisika, posisi dan kecepatan suatu partikel dapat dijelaskan melalui bidang fasa (*phase plane*) dan trayektori gerakan partikel tersebut dapat digambarkan sebagai suatu kurva pada bidang fasa ini. Kesulitannya, jika diinginkan trayektori lebih dari dua dimensi, maka kurva tidak bisa digambarkan. Konsep jarak, ortogonal dan garis-garis paralel dapat dijelaskan melalui visualisasi ODE (*ordinary dif ferential equation*) dalam ruang keadaan.
- Berbeda dengan relasi masukan keluaran pada fungsi alih atau transfer function, ruang keadaan dapat menggambarkan perilaku internal dari sebuah sistem. Sementara fungsi alih hanya berkaitan dengan masukan dan keluaran sistem. Padahal, keadaan dari sistem dinamik seringkali menjelaskan distribusi

energi dalam sebuah sistem. Posisi (energi potensial), kecepatan (energi kinetik), tegangan kapasitor (energi listrik), arus induktor (energi magnetik) merupakan beberapa contoh peubah keadaan yang biasa digunakan untuk menggambarkan dinamika sistem.

3.3 Deskripsi Sistem

Umumnya, analisa ruang keadaan pada pemodelan sistem dinamik melibatkan tiga tipe peubah yakni peubah masukan, peubah keluaran dan peubah keadaan. Asumsikan suatu sistem *Multi Input Multi Output* (MIMO) dengan *n* integrator, *r* masukan $u_1(t), u_2(t), u_3(t), \dots, u_r(t)$ dan *m* keluaran $y_1(t), y_2(t), y_3(t), \dots, y_m(t)$.

Adapun peubah keadaan (*state variables*) merupakan n keluaran integrator $x_1(t), x_2(t), x_3(t), \cdots, x_n(t)$ berikut ini:

$$\begin{aligned}
\dot{x}_{1}(t) &= f_{1}(x_{1}, x_{2}, \cdots, x_{n}; u_{1}, u_{2}, \cdots, u_{r}; t) \\
\dot{x}_{2}(t) &= f_{2}(x_{1}, x_{2}, \cdots, x_{n}; u_{1}, u_{2}, \cdots, u_{r}; t) \\
\vdots \\
\dot{x}_{n}(t) &= f_{n}(x_{1}, x_{2}, \cdots, x_{n}; u_{1}, u_{2}, \cdots, u_{r}; t)
\end{aligned}$$
(3.1)

Sedangkan peubah keluaran (outputs) sebanyak m berikut ini:

$$y_{1}(t) = g_{1}(x_{1}, x_{2}, \cdots, x_{n}; u_{1}, u_{2}, \cdots, u_{r}; t)$$

$$y_{2}(t) = g_{2}(x_{1}, x_{2}, \cdots, x_{n}; u_{1}, u_{2}, \cdots, u_{r}; t)$$

$$\vdots$$

$$y_{m}(t) = g_{m}(x_{1}, x_{2}, \cdots, x_{n}; u_{1}, u_{2}, \cdots, u_{r}; t)$$
(3.2)

Dengan mendefinisikan:

$$x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix}, \ f(x, u, t) = \begin{bmatrix} f_1(x_1, x_2, \cdots, x_n; u_1, u_2, \cdots, u_r; t) \\ f_2(x_1, x_2, \cdots, x_n; u_1, u_2, \cdots, u_r; t) \\ \vdots \\ f_n(x_1, x_2, \cdots, x_n; u_1, u_2, \cdots, u_r; t) \end{bmatrix},$$

$$y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_m(t) \end{bmatrix}, \ g(x, u, t) = \begin{bmatrix} g_1(x_1, x_2, \cdots, x_n; u_1, u_2, \cdots, u_r; t) \\ g_2(x_1, x_2, \cdots, x_n; u_1, u_2, \cdots, u_r; t) \\ \vdots \\ g_m(x_1, x_2, \cdots, x_n; u_1, u_2, \cdots, u_r; t) \end{bmatrix},$$

$$y(t) = \begin{bmatrix} u_1(t) \\ u_2(t) \\ \vdots \\ u_r(t) \end{bmatrix}$$

diperoleh persamaan umum ruang keadaaan:

$$\dot{x}(t) = f(x, u, t) \tag{3.3}$$

$$y(t) = g(x, u, t) \tag{3.4}$$

Linierisasi disekitar titik operasi menghasilkan:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t))$$
 (3.5)

$$y(t) = C(t)x(t) + D(t)u(t)$$
 (3.6)

Matrik A(t), B(t), C(t), D(t) masing-masing merupakan matrik keadaan, masukan, keluaran dan transmisi. Struktur relasi masukan keluaran untuk bentuk ruang keadaan digambarkan berikut ini Rangkaian *RLC* pada gambar 2.3 memiliki pers. (2.9) yang kita tuliskan lagi berikut:

$$LC\frac{d^2v_2(t)}{dt^2} + RC\frac{dv_2(t)}{dt} + v_2(t) = v_1(t)$$

Dengan mendefinisikan

$$\begin{aligned} x_1 &= v_2(t) \\ \dot{v}_2(t) &= \dot{x}_1(t) = x_2 \\ \dot{x}_2(t) &= \ddot{v}_2(t) = \frac{R}{L} \dot{v}_2(t) - \frac{1}{LC} v_2(t) + \frac{1}{LC} v_1(t), \ v_1(t) = u(t) \end{aligned}$$

Gambar 3.2: Struktur Ruang Keadaan

maka persamaan ruang keadaan dengan nilai matrik keadaan A, matrik masukan B, matrik keluaran C dan matriks transmisi D yang bersesuaian dengan pers. (3.5) dan (3.6), diperoleh berikut ini:

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{LC} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{LC} \end{bmatrix} u(t) \quad (3.7)$$

$$u(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \end{bmatrix} \quad (3.8)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$
(3.8)

3.4 Relasi Antara Ruang Keadaan dan Fungsi Alih

Fungsi alih sistem satu masukan satu keluaran (single input - single output, SISO) dapat dirumuskan:

$$G(s) = \frac{Y(s)}{U(s)} \tag{3.9}$$

Dari persamaan ruang keadaan, pers. (3.5) dan (3.6), dapat ditentukan transformasi *Laplace* sebagai berikut

$$sX(s) - x(0) = AX(s) + BU(s)$$
 (3.10)

$$Y(s) = CX(s) + DU(s) \tag{3.11}$$

Dengan memberikan x(0) = 0,

$$sX(s) - AX(s) = BU(s) \tag{3.12}$$

$$(sI - A)X(s) = BU(s) \tag{3.13}$$

$$X(s) = (sI - A)^{-1}BU(s)$$
(3.14)

(3.15)

Sustitusi (3.15) ke (3.11) menghasilkan:

$$Y(s) = [G(s)]U(s)$$
 (3.16)

dimana

$$G(s) = C(sI - A)^{-1}B + D (3.17)$$

3.5 Diagram Blok dan Ruang Keadaan

Untuk memahami keadaan peubah (*variable states*), penggambaran blok diagram yang dapat direalisasikan dengan komputer analog yakni dengan memanfaatkan integrator, diferensiator dan penguat analog. Perhatikan sistem diferensial relasi masukan keluaran orde dua ini

$$\ddot{y} + 4\dot{y} + 3y = 2u \tag{3.18}$$

Dengan mendefinisikan $\dot{y} = x_1, y = x_2$ maka

$$\dot{x}_1 = -4x_1 - 3x_2 + 2u \tag{3.19}$$

$$\dot{x}_2 = x_1 \tag{3.20}$$

Persamaan (3.19)-(3.20) dan diagram blok pada gambar 3.3 diatas merepresentasikan persamaan ruang keadaan dengan :

$$A = \begin{bmatrix} -4 & -3 \\ 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}, D = 0$$

Gambar 3.3: Diagram Blok Sistem Differensial Relasi Masukan-Keluaran

Adapun fungsi alih sistem dapat diketahui dari pers. (3.17) dengan memanfaatkan kode Matlab berikut: A = [-4 - 3; 10]; B = [2; 0]; C = [01]; D = 0; [num, den] = ss2tf(A, B, C, D) Gs = tf(num, den)yakni $G(s) = \frac{2}{s^2+43s+3}$

3.6 Bentuk Kanonik Ruang Keadaan

Pertimbangkanlah suatu persamaan diferensial pada relasi masukankeluaran berikut ini:

$$\frac{d^{n}}{dt^{n}}y(t) + a_{1}\frac{d^{n-1}}{dt^{n-1}}y(t) + \dots + a_{n-1}\frac{d}{dt}y(t) + a_{n}y(t) = b_{0}\frac{d^{n}}{dt^{n}}u(t) + b_{1}\frac{d^{n-1}}{dt^{n-1}}u(t) + \dots + b_{n-1}\frac{d}{dt}u(t) + b_{n}u(t)$$
(3.21)

Fungsi alih pers. (3.21) diatas dapat dituliskan:

$$\frac{b_0 s^n + b_1 s^{n-1} + \dots + b_{n-1} s + b_n}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$
(3.22)

Penulisan persamaan differensial untuk relasi masukan-keluaran diatas menjadi bentuk ruang keadaan memiliki bentuk kanonik terkendali (*controllable*), bentuk kanonik teramati (*observable*), kanonik diagonal dan kanonik Jordan.

3.6.1 Bentuk Kanonik Terkendali (Controllable canonical form)

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \vdots \\ \dot{x}_{n-1} \\ \dot{x}_{n} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_{n} & -a_{n-1} & -a_{n-2} & \cdots & -a_{1} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n-1} \\ x_{n} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} b_{n} - a_{n}b_{0} & b_{n-1} - a_{n-2}b_{0} & \cdots & b_{1} - a_{1}b_{0} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} (3.23)$$

Bentuk kanonik terkendali ini sangat penting bagi desain kendali metode penempatan kutub (*pole placement*)

3.6.2 Bentuk Kanonik Teramati (Observable canonical form)

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \vdots \\ \dot{x}_{n} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 & -a_{n} \\ 1 & 0 & \cdots & 0 & -a_{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{1} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} + \begin{bmatrix} b_{n} - a_{n}b_{0} \\ b_{n-1} - a_{n-1}b_{0} \\ \vdots \\ b_{1} - a_{1}b_{0} \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n-1} \\ x_{n} \end{bmatrix} + b_{0}u \qquad (3.24)$$

3.6.3 Bentuk Kanonik Diagonal (Diagonal canonical form)

Fungsi alih juga dapat dituliskan berdasarkan akar-akar karakteristiknya sebagai berikut:

$$\frac{Y(s)}{U(s)} = \frac{b_0 s^n + b_1 s^{n-1} + \dots + b_{n-1} s + b_n}{(s+p_1)(s+p_2) \cdots (s+p_n)}$$

= $b_0 + \frac{c_1}{s+p_1} + \frac{c_2}{s+p_2} + \dots + \frac{c_n}{s+p_n}$ (3.25)

Bentuk kanonik diagonal dari pers.(3.25) diatas:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} -p_1 & 0 \\ -p_2 & \\ 0 & -p_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + b_0 u \qquad (3.26)$$

3.6.4 Bentuk Kanonik Jordan (Jordan canonical form)

Suatu fungsi alih dengan beberapa akar karakteristik identik, misalnya $p_1=p_2=p_3{:}$

$$\frac{Y(s)}{U(s)} = \frac{b_0 s^n + b_1 s^{n-1} + \dots + b_{n-1} s + b_n}{(s+p_1)^3 (s+p_4)(s+p_5) \cdots (s+p_n)} \\
= b_0 + \frac{c_1}{(s+p_1)^3} + \frac{c_2}{(s+p_1)^2} + \frac{c_3}{s+p_1} + \frac{c_4}{s+p_4} + \dots + \frac{c_n}{s+p_n}$$
(3.27)

Ruang keadaan kanonik Jordan memiliki bentuk sebagai berikut:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} -p_1 & 1 & 0 & 0 & \cdots & 0 \\ 0 & -p_1 & 1 & \vdots & & \vdots \\ 0 & 0 & -p_1 & 0 & \cdots & 0 \\ \hline 0 & \cdots & 0 & -p_4 & & 0 \\ \vdots & \ddots & \vdots & & \ddots & \\ 0 & \cdots & 0 & 0 & & -p_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + b_0 u \qquad (3.28)$$

3.7 Keterkendalian (Controllability) dan Keteramatan (Observability)

Keterkendalian dan keteramatan sebuah sistem memegang peranan penting pada desain kendali dengan ruang keadaan, karena boleh jadi kedua kriteria ini menentukan solusi lengkap bagi permasalahan desain sistem kendali. Solusi desain kendali mungkin tidak ada untuk sebuah sistem yang tak terkendalikan (*uncontrollable*).

Sebuah sistem dikatakan dapat dikendalikan (controllable) pada saat t_0 jika dengan vektor kendali yang tidak dibatasi sistem dapat diubah dari kondisi awal $x(t_0)$ menuju kondisi yang lain dengan interval waktu tertentu (finite). Adapun sistem dikatakan dapat teramati (observable) pada saat t_0 jika kondisi $x(t_0)$ diketahui dari observasi keluaran selama interval waktu tertentu.

Untuk memahami pengertian keterkendalian dan keteramatan, dapat dilihat pada rangkaian listrik pada Gambar 3.4. Masukan sistem merupakan arus u dan keluaran adalah tegangan y. Karena y terbuka (*open circuit*) maka masukan u tidak berpengaruh apapun pada tegangan x_2 , artinya masukan tidak dapat mengendalikan tegangan x_2 . Kemudian arus yang mengalir pada R_3 akan senantiasa sama dengan sumber arus u dan tidak akan muncul di y, artinya arus u tersebut

Gambar 3.4: Rangkaian Listrik

tidak dapat diamati oleh keluaran y. Dengan demikian dapat disimpulkan bahwa rangkaian ini tidak dapat dikendalikan (uncontrollable) dan tidak dapat teramati (unobservable)

3.7.1 Keterkendalian (Controllability)

Sebuah sistem waktu kontinyu dalam ruang keadaan

$$\dot{x} = Ax + Bu \tag{3.29}$$

Solusi pers. (3.29) diatas adalah

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$
 (3.30)

Untuk interval waktu $t_0 \leq t \leq t_1$ dan kondisi akhir adalah titik asal ruang keadaan, maka

$$x(t_1) = 0 = e^{At_1}x(0) + \int_0^t e^{A(t_1-\tau)}Bu(\tau)d\tau \qquad (3.31)$$

$$x(0) = -\int_{0}^{t} e^{A\tau} B u(\tau) d\tau$$
 (3.32)

Memanfaatkan interpolasi Silvester, diperoleh:

$$e^{At_1} = \sum_{k=0}^{n-1} \alpha_k(\tau) A^k$$
 (3.33)

Sustitusi (3.33) ke (3.32)akan mendapatkan:

$$x(0) = -\sum_{k=0}^{n-1} A_k B \int_0^{t_1} \alpha_k(\tau) u(\tau) d\tau$$
 (3.34)

Dengan mendefinisikan

$$\int_0^{t_1} \alpha_k u(\tau) d\tau = \beta_k,$$

didapatkan berikut ini

$$x(0) = -\sum_{k=0}^{n-1} A^{k} B \beta_{k}$$

$$= -\left[B \stackrel{:}{\cdot} AB \stackrel{:}{\cdot} \cdots \stackrel{:}{\cdot} A^{n-1}B \right] \left[\begin{array}{c} \beta_{0} \\ \cdots \\ \beta_{1} \\ \cdots \\ \vdots \\ \vdots \\ \beta_{n-1} \end{array} \right] (3.35)$$

Matrik berukuran $n\times n$

pada persamaan (3.35) diatas merupakan matrik keterkendalian (*controllability matrix* dan sistem dapat dikendalikan (*controllable*) jika dan hanya jika matrik tersebut memilki rank = n, dimana n merupakan ukuran orde sistem.

Kondisi keterkendalian secara lengkap atau komplit dipenuhi jika tidak ada pembatalan (*cancellation*) pada fungsi alih atau matrik alih dalam fasa s. Lebih jelasnya, fungsi alih sistem berikut:

$$G(s) = \frac{s+1}{(s+1)(s+2)(s+3)}$$

merupakan sistem dengan kondisi keterkendalian yang tidak komplit karena ada pembatalan (s+1) yang saling menghilangkan di numerator dan denumerator, sehingga satu derajat kebebasannya hilang.

Secara praktik, mengendalikan keluaran (*output*) lebih realistis dibandingkan dengan mengendalikan keadaan (*state*) sistem sehingga memunculkan kriteria keterkendalian keluaran. Pertimbangkan sistem berikut

$$\dot{x} = Ax + Bu \tag{3.36}$$

$$y = Cx + Du \tag{3.37}$$

dengan matrik A, B, C, D masing-masing berukuran $n \times n, n \times r, m \times n, m \times r$.

Sebuah sistem dikatakan dapat dikendalikan keluaran (controllable output) jika dengan vektor kendali u(t) yang tidak dibatasi (unconstrained), keluaran dapat diubah dari kondisi awal $y(t_0)$ menuju kondisi sembarang lainnya $y(t_1)$ dengan interval waktu $t_0 \leq t \leq t_1$. Keluaran sistem dikatakan dapat dikendalikan komplit, jika dan hanya jika matrik berukuran $m \times (n+1)r$ berikut

merupakan matrik keterkendalian keluaran (*output controllability matrix*) dengan rank = m.

3.7.2 Keteramatan (Observability)

Keteramatan sangat penting dalam menyelesaikan permasalahan keadaan yang tidak dapat terukur secara langsung seperti pada permasalahan umpan balik keadaan (*state feedback*).

Pertimbangkan suatu sistem otonomus, tanpa masukan aksi kendali

$$\dot{x} = Ax \tag{3.38}$$

$$y = Cx \tag{3.39}$$

dengan matrik A, C masing-masing berukuran $n \times n$ dan $m \times n$. Sistem dikatakan dapat teramati (*observable*) jika setiap keadaan $x(t_0)$ dapat diketahui dari pengamatan keluaran y(t) dalam interval waktu $t_0 \leq$

 $t \leq t_1.$ Peniadaan u(t)dikarenakan jika disertakan maka solusinya menjadi

$$\begin{aligned} x(t) &= e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau \\ y(t) &= Ce^{At}x(0) + C\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau + Du \end{aligned}$$

Sedangkan matrikA,B,C,Ddan jugau(t) diketahui sehingga dapat disederhanakan menjadi

$$y(t) = Ce^{At}x(0)$$

Mengacu pada persamaan sebelumnya:

$$e^{At} = \sum_{k=0}^{n-1} \alpha_k(t) A^k$$

maka didapatkan:

$$y(t) = \sum_{k=0}^{n-1} \alpha_k(t) C A^k x(0)$$

$$y(t) = \alpha_0(t) C x(0) + \alpha_1(t) C A x(0) + \dots + \alpha_{n-1}(t) C A^{n-1} x(0)$$

Dapat dilihat bahwa matrik

$$\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

merupakan matrik keteramatan (observability matrix) dan sistem dapat teramati (observable) jika dan hanya jika matrik tersebut memilki rank = n.

Seperti keterkendalian, kondisi keteramatan komplit dipenuhi jika tidak ada pembatalan (*cancellation*) pada fungsi alih atau matrik alih dalam fasa s.

3.8 Soal Latihan

1. Suatu fungsi alih

$$\frac{Y(s)}{U(s)} = \frac{s+2}{s^2+4s+3}$$

Tentukan persamaan ruang keadaan dalam bentuk

- (a) kanonik terkendali
- (b) kanonik teramati, dan
- (c) kanonik diagonal.
- 2. Dua fungsi alih berikut ini, yakni
 - (a)

$$\frac{Y(s)}{U(s)} = \frac{s+5}{(s+1)^2(s+2)(s+3)}$$

(b)

$$\frac{Y(s)}{U(s)} = \frac{s+1}{s^3+7s^2+16s+12}$$

Tentukan bentuk ruang keadaan kedua fungsi alih diatas dalam bentuk kanonik Jordan.

3. Suatu sistem dengan parameter ruang keadaan

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 4 & 5 & 1 \end{bmatrix}$$

Periksalah keterkendalian dan keteramatannya. Ubahlah ke fungsi alih untuk memeriksa apakah ada pembatalan (*cancellation*) zero dan pole.

4. Untuk soal no 1 dan 2 diatas, buatlah diagram blok untuk masingmasing fungsi alih dengan integrator untuk masing-masing keadaan (*state*)

- 5. Untuk Soal No. 4 diatas, simulasikan untuk mendapatkan respon unit step masing-masing sistem
- 6. Untuk gambar diagram blok dibawah ini,

- (a) Tentukan fungsi alihnya
- (b) dan jika masukan unit step u(t), tentukanlah persamaan keluaran y(t),
- (c) Gambarkanlah sinyalnya

BAB 4

Desain Kendali via Ruang Keadaan

4.1 Pendahuluan

Desain kendali pada suatu sistem meliputi dua langkah, yakni penentuan aksi kendali (*control action*, *control law*) dan penentuan estimator atau observer yang diperlukan jika keadaan (*states*) sistem tidak diketahui keseluruhan atau sebagian. Langkah selanjutnya adalah mengkombinasikan aksi kendali dan estimator tersebut.

Pembahasan ini akan menjelaskan struktur sistem kendali dengan kompensator yang merupakan kombinasi kendali (*controller*) dan estimator, pemilihan *poles* baik untuk desain kendali maupun estimator via dominasi *poles* orde dua dan kedudukan akar simetri (*symmetric root locus*, *SRL*)

Gambar 4.1: Struktur Kendali dan Estimator

4.2 Desain Aksi Kendali

Langkah pertama dalam merancang sistem kendali dengan ruang ke-adaan adalah menentukan aksi kendali $(control \ law)$

$$u = -Kx = -\begin{bmatrix} K_1 & K_2 & \cdots & K_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
(4.1)

Substitusi aksi kendali (4.1) ke sistem ruang keadaan menghasilkan

$$\dot{x} = Ax + Bu$$

$$\dot{x} = (A - BK)x \tag{4.2}$$

Persamaan karakteristik sistem lup tertutupnya:

$$det(sI - (A - BK)) = 0 \tag{4.3}$$

Desain kendali menghasilkan kendali K yang menempatkan akar-akar pada persamaan (4.3) pada lokasi yang diinginkan. Persamaan karakteristik kendali yang diinginkan tersebut adalah

$$\alpha_c(s) = (s - s_1)(s - s_2) \cdots (s - s_n) = 0 \tag{4.4}$$

Persamaan (4.3) dan (4.4) adalah identik sehingga dapat digunakan untuk merancang desain kendali K berdasarkan lokasi *poles* yang diinginkan.

Sebagai contoh, tinjau sebuah sistem dengan frekuensi alami mengayun sebesar ω_0 memiliki persamaan ruang keadaan:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -\omega_0^2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
(4.5)

Jika diinginkan frekuensi alamiahnya menjadi dua kali dan rasio redaman dari $\zeta = 0$ menjadi $\zeta = 1$, yakni dengan menempatkan kedua *pole* lup tertutupnya di $-2\omega_0$ maka desain kendali K diperoleh dari (4.3) dan (4.4) berikut

$$\left[sI - (A - BK) \right] = \alpha_c \tag{4.6}$$

$$s^{2} + K_{2}s - \omega_{0}^{2} - K_{1} = s^{2} + 4\omega_{0}s + 4\omega_{0}^{2}$$
(4.7)

Dengan demikian, $K = \begin{bmatrix} K_1 & K_2 \end{bmatrix} = \begin{bmatrix} -5\omega_0^2 & 4\omega_0 \end{bmatrix}$ Trayektori keadaan dengan kondisi awal $x_1 = 1, x_2 = 0$ (silakan merujuk pada **mat4-1** pada Appendix A) dapat digambarkan dibawah ini:

Gambar 4.2: Trayektori keadaan (states) untuk $x_1(0)=1, x_2(0)=0, \omega_0=1$

Metode lain yang cukup ringkas untuk merancang kendali adalah formulasi Ackermann yang dirumuskan:

$$K = \begin{bmatrix} 0 & \cdots & 0 & 1 \end{bmatrix} C_o^{-1} \alpha_c(A)$$
(4.8)

dimana C_o adalah matrik keterkendalian [$B \ AB \ A^2B \cdots \ A^{n-1}B$] dan

$$\alpha_c(A) = A^n + \alpha_1 A^{n-1} + \alpha_2 A^{n-2} + \dots + \alpha_n I$$
(4.9)

Jika diinginkan persamaan karakteristiknya $\alpha_c(s) = (s + 2\omega_0)^2$ maka koefisien yang diinginkan, $\alpha_1 = 4\omega_0$ dan $\alpha_2 = 4\omega_0^2$ dapat disubstitusikan ke (4.9) diatas berikut ini:

$$\begin{aligned} \alpha_c(A) &= \begin{bmatrix} \omega_0^2 & 0\\ 0 & \omega_0^2 \end{bmatrix} + 4\omega_0 \begin{bmatrix} 0 & -1\\ -\omega_0^2 & 0 \end{bmatrix} + 4\omega_0^2 \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 5\omega_0^2 & -4\omega_0\\ -4\omega_0^3 & 5\omega_0^2 \end{bmatrix} \end{aligned}$$

Matrik keterkendaliannya

$$C_0 = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

sehingga

$$C_0^{-1} = \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right]$$

Dengan demikian diperoleh gain kendali

$$K = \begin{bmatrix} K_1 & K_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 5\omega_0^2 & -4\omega_0 \\ -4\omega_0^3 & 5\omega_0^2 \end{bmatrix}$$
$$= \begin{bmatrix} -5\omega_0^2 & 4\omega_0 \end{bmatrix}$$

yang sama dengan perhitungan sebelumnya.

4.2.1 Kendali untuk sistem umpan balik keadaan penuh (full order state feedback) dengan masukan acuan (reference input)

Adanya masukan acuan r dengan mudah diikuti perubahan aksi kendali dari u = -Kx menjadi u = -Kx + r. Meskipun demikian, perlu dipertimbangkan munculnya kesalahan keadaan mantap $(non - zero \ steady \ state \ error)$ pada masukan unit step. Untuk itu, perlu diperhitungkan nilai-nilai mantap dari keadaan (state) dan aksi kendali sehingga menghasilkan keluaran tanpa kesalahan $(zero \ output \ error)$. Jika diinginkan nilai keadaan dan aksi kendali adalah x_{s-s} dan u_{s-s} , maka aksi kendali yang baru menjadi

$$u = u_{s-s} - K(x - x_{s-s}) \tag{4.10}$$

Artinya, tanpa kesalahan nilai $x = x_{s-s} \operatorname{dan} u = u_{s-s}$.

Diinginkan kesalahan keadaan mantap $(steady - state \ error)$ senantiasa nol untuk setiap masukan konstan, yang dapat diperoleh dengan menyelesaikan persamaan sistem standar dibawah ini:

$$\dot{x} = Ax + Bu y = Cx + Du$$

Pada kondisi mantap, persamaan diatas dapat disederhanakan menjadi

$$0 = Ax_{s-s} + Bu_{s-s} (4.11)$$

$$y_{s-s} = Cx_{s-s} + Du_{s-s} (4.12)$$

Perhitungan gain untuk masukan acuan diselesaikan dengan mengusahakan nilai $y_{s-s} = r_{s-s}$ yang diperoleh dengan mendefinisikan $x_{s-s} = N_x r_{s-s}$ dan $x_{s-s} = N_u r_{s-s}$. Selanjutnya akan diperoleh:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} N_x r_{s-s} \\ N_u r_{s-s} \end{bmatrix} = \begin{bmatrix} 0 \\ r_{s-s} \end{bmatrix}$$
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} N_x \\ N_u \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
(4.13)

Selanjutnya, dengan mudah diperoleh:

$$\begin{bmatrix} N_x \\ N_u \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
(4.14)

Maka aksi kendali untuk sistem dengan masukan acuan $unit\ step$ dapat dituliskan

$$u = N_u r - K(x - N_x r)$$

= $-Kx + (N_u + KN_x)r$
= $-Kx + \bar{N}r$ (4.15)

Untuk lebih jelasnya, pertimbangkan sistem pendulum terbalik, dengan keluaran x_1 memiliki matrik ruang keadaan

$$A = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Jika diinginkan kedua *poles* kendali terletak di s = -2, maka diperoleh K = [-5 4].

Substitusikan ke (4.13), akan didapat:

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} N_x \\ N_u \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
(4.16)

Untuk mendapatkan $\begin{bmatrix} N_x \\ N_u \end{bmatrix}$, dapat diselesaikan dengan cara berikut: Terlihat bahwa $N_x = \begin{bmatrix} N_{x1} \\ N_{x2} \end{bmatrix}$, sehingga

$$\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} N_{x1} \\ N_{x2} \\ N_u \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
(4.17)

Dari persamaan (4.17) diatas, didapatkan $N_{x2} = 0, -N_{x1} + N_u = 0, N_{x1} = 1$ atau $N_x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, N_u = 1.$

Tanggapan unit step dapat digambarkan berikut (silakan merujuk pada **mat4-2**, *AppendixA*) dapat digambarkan dibawah ini:

Gambar 4.3: Tanggapan sistem terhadap masukan acuan unit step

4.2.2 Pemilihan Lokasi Poles

Pendekatan yang digunakan pada pemilihan lokasi *poles* dalam buku ini meliputi dua teknik, yakni dominasi *poles* orde dua dan kedudukan akar simetris. Teknik pertama digunakan untuk lebih mengutamakan upaya kendali, sedangkan teknik kedua yang seringkali disebut kendali optimal atau kedudukan akar simetri (*symmetric root locus*) berupaya menyeimbangkan antara tanggapan sistem yang baik dan upaya kendali (*control effort*).

4.2.2.1 Dominasi Poles orde dua

Pada sistem orde dua, lokasi *pole* dapat menggambarkan rasio peredaman ζ , frekuensi alami ω_n sistem yang selanjutnya dapat menentukan waktu naik (*rise time*) t_r , persentase lonjakan (*overshoot*) M_p , waktu penempatan (*settling time*) t_s . Relasi beberapa parameter sistem orde dua diatas sebagai berikut:

$$M_p = e^{\frac{-\pi\zeta}{\sqrt{1-\zeta^2}}} \tag{4.18}$$

$$\omega_n \geq \frac{1.8}{t_r} \tag{4.19}$$

$$\zeta \omega_n \geq \frac{4.6}{t_s} \tag{4.20}$$

$$t_p = \frac{\pi}{\omega_d} \tag{4.21}$$

Gambar 4.5: Definisi beberapa parameter tanggapan sistem orde dua Poles lup tertutup pada sistem dengan orde yang lebih tinggi da-

pat dipilih sebagai pasangan dominasi *poles* orde dua. Kemudian penyesuaian sisa *pole* yang dicari supaya bernilai bilangan nyata (riil) sehingga cukup teredam dan sistem secara keseluruhan memiliki perilaku tanggapan seperti sistem orde dua. Posisi *zeros* mesti dipastikan cukup jauh disebelah kiri bidang *s* untuk menghindari pengaruh perilaku sistem orde dua.

Sebagai ilustrasi, sebuah sistem dengan matriks ruang keadaan,

$$A = \begin{bmatrix} -1 & -2 & -2 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$
$$C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, D = 0$$

Jika sistem diinginkan memiliki prosentase *overshoot* tidak melebihi 5 % dan *time setling* tidak lebih dari 4.6 detik maka berdasarkan grafik pada gambar 4.4, diperoleh rasio redaman $\zeta = 0.707$.

Perhatikan jika persamaan karakteristiknya menjadi

$$(s + \frac{1}{2}\sqrt{2} + j\frac{1}{2})(s + \frac{1}{2}\sqrt{2} - j\frac{1}{2}) = s^2 + \sqrt{2}s + 1$$

Disini dipilih frekuensi paling tidak $(\frac{1}{0.707} = 1.4)$ supaya memenuhi time setling 4.6 detik (perhatikan persamaan 4.18 dan 4.20). Jika poles yang dominan ditentukan -0.707 - j0.707; -0.707 + j0.707, pole yang ketiga bisa dipilih di -10 dengan faktor pengali setengah dari frekuensi natural ω_n $(\frac{1}{0.707})$. Respon step sistem awal dan respon sistem dengan desain kendali metode dominasi poles orde dua dapat dilihat pada gambar dibawah ini (Silakan mengacu pada Appendix A, **mat4-5**). Perhatikan bahwa time setling tercapai sebelum 4.6 detik dan prosentase overshoot 6 %. Adapun sistem awal memiliki overshoot 26 % dan time setling sekitar 6.7 detik

Gambar 4.6: Respon step sistem awal

Gambar 4.7: Respon step dominasi *poles* orde dua

Gambar 4.8: Pengaruh dominasi poles orde dua terhadap sistem

4.2.2.2 Kedudukan akar simetri (Symmetric Root Locus, SRL)

Kendali linear~quadratic~regulator, LQRmerupakan metode kendali optimal yang dikenal efektif, dengan meminimalkan fungsi biaya

$$J = \int_0^\infty (\rho z^2(t) + u^2(t))dt$$
 (4.22)

pada sebuah sistem linier

$$\dot{x} = Ax(t) + Bu(t)$$

$$z = C_1 x(t)$$
(4.23)

dimana ρ merupakan fungsi bobot dan aksi kendali yang dirancang

$$u(t) = -Kx(t) \tag{4.24}$$

NilaiKoptimal diper
oleh dengan menempatkan pole-polelup tertutup pada akar-
akar yang stabil persamaan SRL

$$1 + \rho G_0(-s)G_0(s) = 0 \tag{4.25}$$

dimana

$$G_0(s) = \frac{Z(s)}{U(s)} = C_1(sI - A)^{-1}B$$
(4.26)

Untuk contoh sistem orde satu, diketahui

$$\dot{x} = -ax(t) + u(t)$$
$$z = x(t)$$

maka dengan pers. (4.26) didapatkan

$$G_0(s) = \frac{1}{s+a}$$

Akar persamaan SRL (dari pers. (4.25)) diperoleh sebagai berikut

$$s=-\sqrt{a^2+\rho}$$

Dengan demikian, untuk nilai ρ yang berubah naik ($\rho > 0$) maka lokasi akar lup tertutup yang meminimalkan fungsi biaya akan terletak disebelah kiri akar lup terbuka sistem G_0 .

Sebagai contoh, tinjau sistem $G=\frac{1}{s+1}$ maka dengan metode SRL diper
oleh

Gambar 4.9: SRL untuk sistem $G(s) = \frac{1}{s+1}$

Sistem memiliki rasio redaman $\zeta = 1$ dan dengan memilih pole s = -2 pada $\rho = 3$ maka kendali dapat didesain dengan metode penempatan pole tersebut. Dengan demikian diperoleh A = -1, B = 1, C = 1, D = 0, sehingga K = 1. Respon kedua sistem dapat dilihat berikut ini:

Gambar 4.10: Respon step untuk sistem tanpa dan dengan kendali SRL

4.3 Desain Estimator

Pada banyak kasus, tidak semua keadaan state suatu sistem diketahui dengan mudah karena terkait dengan pengukuran yang sulit dan mahal, pengaruh perubahan sistem karena gangguan dan noise dan sebagainya. Untuk itu, desain pengamat observer atau estimator pada desain kendali dengan umpan balik keadaan (state feedback) sangat dibutuhkan untuk mengetahui state sistem dengan sedikit pengukuran misalnya. State yang diestimasi \hat{x} menghasilkan aksi kendali $u = -K\hat{x} + r$

4.3.1 Estimator Orde Penuh (Full Order Estimator)

Model ruang keadaan untuk estimator orde penuh dituliskan

$$\dot{\hat{x}} = A\hat{x} + Bu \tag{4.27}$$

Kondisi awal x(0) perlu diketahui dan digunakan sebagai nilai awal $\hat{x}(0)$. Estimator lup terbuka digambarkan berikut:

Gambar 4.11: Estimator lup terbuka

Error estimasiedidefinsikan sebagai selisih keadaan (state) sesung-guhnya x dengan state estimasi \hat{x} berikut:

$$e = x - \hat{x} \tag{4.28}$$

Dinamika error estimasi menjadi

$$\dot{e} = \dot{x} - \dot{\hat{x}} = Ae \tag{4.29}$$

Umpan balik merupakan solusi yang umum digunakan termasuk pada kasus desain estimator. Umpan balik pada selisih keluaran terukur

dan keluaran estimasi dengan gain estimator L, dan koreksi model ruang keadaan, maka diperoleh persamaan

$$\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x})$$
 (4.30)

dimana $L = \begin{bmatrix} l_1 & l_2 & \cdots & l_n \end{bmatrix}^T$ sehingga dinamika error estimasinya menjadi

$$\dot{e} = (A - LC)e \tag{4.31}$$

Gambar 4.12: Desain estimator dengan umpan balik

Dengan demikian, diperoleh persamaan karakteristik error

$$det[sI - (A - LC)] = 0 (4.32)$$

dengan pole - pole estimator yang diinginkan

$$p_e = (s - p_1)(s - p_2) \cdots (s - p_n)$$
 (4.33)

Sebagai contoh, pertimbangkan sebuah sistem dengan persamaan ruang keadaan

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; y = \begin{bmatrix} 0 & 1 \end{bmatrix} x$$

diinginkan memiliki 2poleestimator pada -1 dan -2. Gain estimator yang diperoleh sebagai berikut

$$(s - p_1)(s - p_2) = det[sI - (A - LC)]$$

 $(s + 1)(s + 2) = s^2 - sl_2 + 1 + l_1$

maka

$$L = \begin{bmatrix} l_1 \\ l_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$

4

Gambar 4.13: Tayektori state estimasi \hat{x}_1 dan \hat{x}_2 , dengan $\hat{x}(0) = [1 \ 0]^T$

4.3.2 Estimator Orde Terkurangi(*Reduced Order Estimator*)

Adanya state yang dapat diketahui langsung melalui pengukuran seperti state keluaran misalnya akan membantu mengurangi kerumitan desain estimator yang mana orde estimator menjadi terkurangi. Tentu saja, desain estimator orde penuh lebih baik digunakan untuk sistem dengan keluaran yang terkena gangguan (noise) untuk mengkompensasi dan mengestimasi state tak terukur akibat gangguan tersebut. Orde estimator dikurangi dari keluaran yang terukur, misal $y = x_a$. Sedangkan state sisanya didefinisikan sebagai x_b misalnya. Persamaan ruang keadaannya menjadi terdekomposisi sebagai berikut:

$$\begin{bmatrix} \dot{x_a} \\ \dot{x_b} \end{bmatrix} = \begin{bmatrix} A_{aa} & A_{ab} \\ A_{ba} & A_{bb} \end{bmatrix} \begin{bmatrix} x_a \\ x_b \end{bmatrix} + \begin{bmatrix} B_a \\ B_b \end{bmatrix} u \qquad (4.34)$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_a \\ x_b \end{bmatrix}$$
(4.35)

Dari persamaan diatas, diperoleh peubah keadaan tak terukurnya:

$$\dot{x}_b = A_{bb}x_b + A_{ba}x_a + B_b u \tag{4.36}$$

dua suku terakhir merupakan masukan yang diketahui, dan dinamikastateterukurnya:

$$\dot{x}_a = \dot{y} = A_{aa}y + A_{ab}x_b + B_a u \tag{4.37}$$

Kita bisa mengumpulkan pengukuran yang diketahui menjadi

$$\dot{y} - A_{aa}y - B_a u = A_{ab}x_b \tag{4.38}$$

Dari penjelasan diatas, dapat kita petakan transformasi peubah sebagai berikut:

$$x \leftarrow x_b, A \leftarrow A_{bb}, Bu \leftarrow A_{ba}y + B_bu, y \leftarrow \dot{y} - A_{aa}y - B_au, C \leftarrow A_{ab}y + B_bu, y \leftarrow \dot{y} - A_{aa}y - B_au, C \leftarrow A_{ab}y + B_bu, y \leftarrow \dot{y} - A_{aa}y - B_au, C \leftarrow A_{ab}y + B_bu, y \leftarrow \dot{y} - A_{aa}y - B_au, C \leftarrow A_{ab}y + B_bu, y \leftarrow \dot{y} - A_{aa}y - B_au, C \leftarrow A_{ab}y + B_bu, y \leftarrow \dot{y} - A_{aa}y - B_au, C \leftarrow A_{ab}y + B_bu, y \leftarrow \dot{y} - A_{aa}y - B_au, C \leftarrow A_{ab}y + B_bu, y \leftarrow \dot{y} - A_{aa}y - B_au, C \leftarrow A_{ab}y + B_bu, y \leftarrow \dot{y} - A_{ab}y + B_bu, y \leftarrow \dot{y} + A_bu, y \leftarrow \dot$$

yang dapat disubstitusikan ke persamaan ke
adaan estimator orde penuh $\dot{\hat{x}}=A\hat{x}+Bu+L(y-C\hat{x})$ untuk mendapatkan persamaan ke
adaan orde terkurangi berikut

$$\dot{\hat{x}}_b = A_{bb}\hat{x}_b + A_{ba}y + B_bu + L(\dot{y} - A_{aa}y - B_au - A_{ab}\hat{x}_b)$$
(4.39)

Dengan mendefinisikan error estimasi

$$e_b = x_b - \hat{x}_b \tag{4.40}$$

didapat turunan estimasi error

$$\dot{e}_b = \dot{x}_b - \dot{x}_b \tag{4.41}$$

$$\dot{e}_b = (A_{bb} - LA_{ab})e_b \tag{4.42}$$

sehingga persamaan karakteristiknya

$$det[sI - (A_{bb} - LA_{ab})] = 0 (4.43)$$

Pada persamaan state estimator, munculnya peubah turunan keluaran \dot{y} tidak bisa diterima karena bisa jadi adanya noise yang akan menguat akibat diferensiasi. Oleh karena itu didefinsikan kendali baru

$$x_c = \hat{x}_b - Ly \tag{4.44}$$

Dengan demikian, bentuk baru estimator orde terkurangi diberikan berikut ini:

$$\dot{x}_{c} = (A_{bb} - LA_{ab})\hat{x}_{b} + (A_{ba} - LA_{aa})y + (B_{b} - LB_{a})u \quad (4.45)$$

Contoh kasus. Suatu sistem dengan ruang keadaan

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

Diinginkan lokasi pole errornya di -10, maka desain estimator orde terkuranginya dapat menggunakan persamaan karakteristik dan kedudukan pole sebagai berikut:

$$det[sI - (A_{bb} - LA_{ab})] = 0$$
$$s + 10 = 0$$

yang menghasilkan L = 10. Trayektori state estimasi \hat{x}_b

Gambar 4.14: Tayektori *state* estimasi \hat{x}_b

State estimasinya:

$$\dot{\hat{x}}_b = -x_a + 10x_b - 10\hat{x}_b + u$$

Dengan demikian estimator orde terkuranginya adalah

$$\dot{x_c} = -10\hat{x}_b - x_a + u$$

4.3.3 Pemilihan lokasi pole estimator

Pole - pole estimator dapat dipilih lebih cepat 2-6 kali dibandingkan dengan pole - pole kendali. Ini akan menjamin peluruhan (decay) error estimator lebih cepat dibandingkan dinamika yang diinginkan sehingga pole - pole kendali mendominasi respon sistem keseluruhan.Jika noise pengukuran cukup dipertimbangkan maka kita bisa memilih pole - pole estimator lebih lambat 2 kali dianding pole - pole
kendali sehingga diperoleh sistem dengan lebar pita (bandwidth) lebih rendah dan memperhalus noise. Karena pembahasan ini difokuskan ke pemilihan pole – pole estimator, kita berharap bahwa respon sistem sangat dipengaruhi oleh lokasi pole – pole estimator. Lokasi pole – pole estimator yang lebih lambat diharapkan dapat mendominasi respon sistem terhadap gangguan (disturbance) dibandingkan dengan karakteristik pole – pole kendali.

Seperti pada pemilihan lokasi pole - pole kendali, terdapat umpan balik, biasanya berupa sinyal elektronika atau sinya digital di komputer yang meningkat seiring dengan peningkatan respon sistem. Pada pengendali, peningkatan respon akan meningkatkan upaya kendali yang membutuhkan aktuator yang lebih besar dan tentu berbiaya lebih mahal. Adapun pada estimator, peningkatan respon artinya *bandwidth* akan lebih tinggi sehingga membutuhkan lebih banyak sensor *noise*. Dengan demikian, seperti pada desain kendali, desain estimator perlu menyeimbangkan respon transient yang bagus dan *bandwidth* yang cukup rendah.

Pertimbangkan persamaan estimator berikut:

$$\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x}) \tag{4.46}$$

Kemudian, pertimbangkan pula noise proses wdan noise sensor vdibawah ini:

$$\dot{x} = Ax + Bu + B_1 w \tag{4.47}$$

$$y = Cx + v \tag{4.48}$$

Perhatikan bahwa noise sensor dikalikan dengan gain estimator L, sedangkan noise proses tidak. Jika L cukup kecil maka noise sensor bisa dihilangkan, tetapi respon estimator menjadi lambat dan tidak dapat menghilangkan pengaruh noise proses w dengan baik. Adapun jika L besar maka respon estimator menjadi cepat dan dapat menolak pengaruh noise proses w, tetapi menghasilkan error yang besar pada noise sensor v karena dikalikan dengan L. Sebagai penyeimbang, dapat juga digunakan kedudukan akar seimbang, symmetric root locus (SRL) seperti yang digunakan pada kasus kendali, berikut:

$$1 + qG_e(-s)G_e(s) = 0 (4.49)$$

(4.50)

dimana qmerupakan rasio antara intensitas noise proses dengan noise sensor dan G_e adalah fungsi alih antara noise proses dengan noise sensor

$$G_e(s) = C(sI - A)^{-1}B_1$$
 (4.51)

Sebagai contoh kasus, suatu sistem dengan ruang keadaan

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} w_1;$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + v$$

maka diperoleh fungsi alih SRL untuk estimatornya:

$$G_e(s) = \frac{1}{s^2 + 1}$$

Gambar 4.15: SRL estimator

Untuk nilai tertentu q=365, maka kita dapatkan pole – pole estimator -2.98 + j3.2 dan -2.98 - j3.2 yang dapat digunakan untuk penempatan poles estimator.

Untuk poles diatas, persamaan karakteristiknya $(s+2.98+j3.2)(s+2.98-j3.2) = s^2+5.96s+19.12$ dan $det(sI-A+LC) = s^2+sL_1+1+L_2$. Dengan demikian diperoleh gain estimator $L = [5.96\ 18.12]$

4.4 Desain Kompensator Kombinasi Kendali dan Estimator

Dengan menggabungkan pembahasan desain kendali dan estimator sebelumnya, maka diperoleh regulator yang mampu menolak gangguan, tetapi regulator ini tanpa *input* (masukan) yang dapat dijejaki. Bagaimanapun, karena desain kendali didesain untuk umpan balik sistem sesungguhnya, bukan sistem terestimasi maka kita dapat melihat pengaruh penggunaan \hat{x} menggantikan x pada dinamika sistem.

Persamaan karakteristik dan fungsi alih kompensator lup terbuka dihitung untuk membandingkan desain ruang keadaan dengan desain kedudukan akar dan respons frekuensi.

Pada sebuah regulator, persamaan sistem dengan umpan balik adalah:

$$\dot{x} = Ax + B(-K\hat{x}) \tag{4.52}$$

yang juga dapat dituliskan dengan mempertimbangkan error estimas
i \boldsymbol{e}

$$\dot{x} = Ax - BK(x - e) \tag{4.53}$$

Maka, bentuk ruang dinamika sistem keseluruhannya:

$$\begin{bmatrix} \dot{x} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} A - BK & BK \\ 0 & A - LC \end{bmatrix} \begin{bmatrix} x \\ e \end{bmatrix}$$
(4.54)

Dengan demikian, persamaan karakteristiknya dapat dituliskan sebagai berikut:

$$det \begin{bmatrix} sI - A + BK & -BK \\ 0 & sI - A + LC \end{bmatrix} = 0$$
(4.55)

Bentuk matrik diatas karena triangular dapat juga dituliskan:

$$det(sI - A + BK) \cdot det(sI - A + LC) = \alpha_c(s) \cdot \alpha_e(s) = 0 \quad (4.56)$$

Sebagai contoh kasus, kita ulangi sistem dengan ruang keadaan

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

Diinginkan poles kendali di $s_{p1} = -1$ dan $s_{p2} = -2$, pole estimator $s_e = -5$. Maka desain kendali dan estimator orde terkurangi, sebagai berikut:

 $A=[0 \ 1;-1 \ 0]; B=[0;1]; C=[1 \ 0]; K=place(A,B,[-1 \ -2]); maka K=[1 \ 3]$

Dengan cara yang sama, diper
oleh estimator orde terkurang
iL=5 sehingga persamaan lup tertutup sistem menjadi:

$$\dot{x} = \begin{bmatrix} A - BK & 0 \\ 0 & A_{bb} - LA_{ab} \end{bmatrix} x$$

Trayektori *state* tergambar berikut ini (silakan merujuk pada lampiran **mat4-7**) :

Gambar 4.16: Trayektori x_a, x_b, \hat{x}_b

4.4.1 Pole - pole kombinasi kendali dan estimator

Kita ulangi persamaan ruang keadaan untuk kompensator kombinasi kendali dan estimator:

$$\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x}) \tag{4.57}$$

$$u = -K\hat{x} \tag{4.58}$$

maka

$$\dot{\hat{x}} = (A - BK - LC)\hat{x} + Ly \tag{4.59}$$

$$u = -K\hat{x} \tag{4.60}$$

dan persamaan karakteristiknya menjadi

$$det(sI - A + BK + LC) = 0 \tag{4.61}$$

Adapun pada kendali, dengan ruang keadaan

$$\dot{x} = Ax + Bu \tag{4.62}$$

$$u = -K\hat{x} \tag{4.63}$$

maka persamaan karakteristiknya menjadi

$$det(sI - A) = 0 \tag{4.64}$$

Gambar 4.17: Kombinasi kendali dan estimator

4.4.2 Fungsi alih kompensator

Dengan memperhatikan relasi antara persamaan ruang keadaan dan fungsi alih untuk sistem berikut

$$\dot{x} = Ax + Bu \tag{4.65}$$

$$u = -Kx \tag{4.66}$$

dimana fungsi alihnya:

$$\frac{Y(s)}{U(s)} = G(s) = C(sI - A)^{-1}B + D$$
(4.67)

maka kita dapat mengadopsi fungsi alih untuk kompensator kombinasi kendali dan estimator pada persamaan (4.61-4.62) menjadi

$$\frac{U(s)}{Y(s)} = D(s) = -K(sI - A + BK + LC)^{-1}L$$
(4.68)

4.4.3 Fungsi alih kompensator orde terkurangi

Untuk estimator orde terkurangi, aksi kendali

$$u = -\begin{bmatrix} K_a & K_b \end{bmatrix} \begin{bmatrix} x_a \\ \hat{x}_b \end{bmatrix}$$
(4.69)

Substitusi ke persamaan (4.45) untuk mendapatkan ruang keadaan kompensator orde terkurangi sebagai berikut:

$$\dot{x}_c = A_r x_c + B_r y \tag{4.70}$$

$$u = C_r x_c + D_r y \tag{4.71}$$

sehingga fungsi alih kompensator orde terkurangi sebagai berikut:

$$D_{cr} = C_r (sI - A_r)^{-1} B_r + D_r (4.72)$$

dimana

$$A_r = A_{bb} - LA_{ab} - (B_b - LBa)K_b$$

$$B_r = A_rL + A_{ba} - LA_{aa} - (B_b - LB_a)K_a$$

$$C_r = -K_b$$

$$D_r = -K_a - K_bL$$

Sebagai contoh, sebuah sistem $\frac{1}{s^2}$ diinginkan memiliki *pole – pole* kendali pada $s = \frac{1}{2}\sqrt{2}(1+j)$ dan $s = \frac{1}{2}\sqrt{2}(1-j)$. Artinya sistem memiliki $\omega_n = 1$ dan $\zeta = \frac{1}{2}\sqrt{2}$. Diinginkan juga *pole – pole* estmatornya pada $\omega_n = 5$ dan $\zeta = 0.5$, maka desain kompensatornya sebagai berikut:

Ruang keadaan sistem:

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u,$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Persamaan karakteristiknya

$$\alpha_c = s^2 + \sqrt{2}s + 1 = [sI - A + BK]$$

sehingga diperoleh $K=\begin{bmatrix} 1 & \sqrt{2} \end{bmatrix}$ Adapun persamaan karakteristikpole-poleestimator

$$\alpha_e = s^2 + 5s + 25 = [sI - A + LC]$$

sehingga diperoleh $L = \begin{bmatrix} 5 & 25 \end{bmatrix}^T$ Fungsi alih kompensator diperoleh dengan merujuk persamaan (4.70) berikut:

$$D(s) = -40.4 \frac{(s+0.619)}{(s+3.21+j4.77)(s+3.21-j4.77)}$$

Untuk desain kompensator orde terkurangi (*reduced order com*pensator), misal diinginkan pole estimatornya di s = -5 sehingga $\alpha_e = s + 5 = det(sI - A_{bb} - LA_{ab}) = 0$, maka diperoleh L = 5. Fungsi alih kompensator orde terkurangi diperoleh dengan merujuk persamaan (4.74) berikut:

$$D_{cr}(s) = -\frac{8.07(s+0.619)}{(s+6.41)}$$

4.5 Soal Latihan

- 1. Susunlah sebuah persamaan ruang keadaan untuk state x dan \hat{x} dengan keluaran y dan estimasi keluaran \hat{y} pada sebuah sistem dengan kendali dan estimator. Buatlah diagram bloknya.
- 2. Fungsi alih sebuah sistem adalah $\frac{Y(s)}{U(s)} = \frac{s}{s^2+4}$
 - (a) Tuliskan persamaan ruang keadaannya
 - (b) Desainlah kendali yang menempatkan 2 pole sistem di-2+2jdan-2-2j
- 3. Hitung gain masukan yang dibutuhkan sehingga masukan acuan memiliki *error steady state* sama dengan nol untuk sistem berikut:

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & -10 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u,$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

- 4. Sebuah pendulum terbalik sederhana dengan frekuensi alami $\omega_n = 2 \ rad/det$, dituliskan dalam persamaan diferensial $\dot{x}_1 = x_2, \dot{x}_2 = \omega_n^2 x_1 u$ dimana x_1, x_2 masing-masing posisi dan kecepatan ayunan pendulum. Keluaran sistem merupakan penjumlahan posisi dan kecepatan.
 - (a) Desainlah kendali untuk sistem pendulum ini sehingga respon unit step untuk lup tertutupnya memiliki spesifikasi overshoot kurang dari 25 %($\zeta = 0.4$) dan waktu settling 1% nya kurang dari 0.115 detik
 - (b) Dengan metode kedudukan akar simetri (Symmetric Root Locus, SRL), tentukan pole yang paling optimal (stabil) jika persamaan SRL adalah 1 + ρ^{(N(-s)N(s))}_{(D(-s)D(s))} = 0, dimana ρ, N, D masing-masing adalah faktor bobot pilihan desainer, numerator dan denumerator fungsi alih sistem
- 5. Sebuah pendulum terbalik yang dikendalikan melalui pergerakan dorongan-tarikan *cart*, memiliki persamaan diferensial berikut: $\ddot{\theta} = \theta + u, \ddot{x} = -\beta\theta - u$, dimana θ, x, u masing-masing adalah sudut pendulum, posisi *chart* dan aksi kendali *chart*
 - (a) Tentukan kendali K sehingga poles lup tertutupnya terletak di -1, -2, -1+j dan -1-j dengan mendefinisikan peubah keadaan masing-masing adalah $\theta, \dot{\theta}, x, \dot{x}$ dan diketahui $\beta = 0.5$
 - (b) Dengan metode SRL, pilihlah *poles* dengan lebar pita yang cukup dekat dengan soal (a), tentukan pula gain kendalinya. Asumsikan variabel terukur adalah sudut pendulum
 - (c) Dengan kondisi awal $\theta=10^0,$ bandingkan trayektori keadaan (states) pad soal (a) dan (b)
 - (d) Hitunglah N_x , N_u untuk kesalahan steady state dengan masukan konstan pada posisi *cart*, bandingkan respon unit step untuk kedua sistem lup tertutupnya.
- 6. Buatlah diagram blok yang menggambarkan struktur estimator orde terkurangi dengan memperhatikan persamaan (4.34)-(4.45)

diatas.

7. Sebuah sistem dengan persamaan ruang keadaan

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u;$$

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} x$$

diinginkan memiliki 2 *pole* estimator pada -1 dan -3. Sedangkan *poles* kendali yang diingingkan adalah -1 dan -2. Desainlah gain kendali K dan gain estimator L, tentukan pula fungsi alih dari kompensator tersebut. Tampilkan trayektori keadaan x dan \hat{x} jika kondisi awalnya untuk semua *state* $x(0) = [1 \ 0 \ -1 \ 1]^T$

- 8. Sebuah sistem $G(s) = \frac{4}{s^2 4}$,
 - (a) Tentukan ruang keadaannya dalam observable canonical.
 - (b) Diinginkan pole pole kendali terletak di s = -2 + j2, s = -2 j2 dan estimator terletak di s = -3 + j3, s = -3 j3, maka tentukan fungsi alih kompensator yang didesain.

BAB 5

Desain Kompensator dengan Masukan Acuan

Pada pembahasan sebelumnya, desain kendali dan estimator secara esensial merupakan sebuah desain regulator yang menghasilkan pemilihan persamaan karakteristik yang bagus untuk penolakan ganggauan (disturbance rejection) tanpa mempertimbangkan masukan acuan (reference input) yang biasa dibutuhkan pada sistem yang mengikuti acuan (tracking) atau command following. Dua spesifikasi yang baik yakni penolakan terhadap gangguan dan kemampuan mengikuti acuan merupakan kebutuhan desain sistem kendali. Pada bab ini akan dijelaskan desain kompensator kombinasi kendali dan estimator dengan masukan acuan, struktur desainnya, kendali integral dan penjejakan kokoh (robust tracking).

5.1 Gambaran Umum

Pertimbangkan lagi sebuah *plant* sistem dan kompensator dengan estimator orde penuh;adapun orde terkurangi akan sama secara konsep; sebagai berikut:

$$\dot{x} = Ax + Bu, y = Cx \tag{5.1}$$

$$\dot{\hat{x}} = (A - BK - LC)\hat{x} + Ly, u = -K\hat{x}$$
 (5.2)

Persamaan karakteristiknya:

$$det(sI - A + BK) \cdot det(sI - A + LC) = 0$$
(5.3)

Blok diagram sistem kendali dengan kompensator yang mempertimbangkan masukan acuan dapat digambarkan dibawah ini, dengan letak kompensator sebagai umpan balik (feedback) maupun umpan maju (feedforward)

Kompensator

Gambar 5.1: Desain kompensator dengan masukan acuan, struktur feedback

Gambar 5.2: Desain kompensator dengan masukan acuan, struktur feed forward

5.1.1 Struktur pada Masukan Acuan

Adanya masukan acuan r menambah parameter vektor M dan skalar N pada persamaan kompensator (5.2) sebagai berikut:

$$\dot{\hat{x}} = (A - BK - LC)\hat{x} + Ly + Mr, \qquad (5.4)$$

$$u = -K\hat{x} + Nr \tag{5.5}$$

Karena r(t) merupakan sinyal eksternal, maka baik nila
iM atau N tidak mempengaruhi perpindahan zeros dari
 r ke y sehingga tidak mempengaruhi kestabilan, hanya mempengaruhi tanggapan transient.
Untuk mendapatkan tanggapan transient yang bagus, maka pemilihan M dan N dilakukan dengan pemilihan pole – pole sistem oleh gain
umpan balik K, L dan pemilihan zero – zero oleh gain umpan maju M, N

Ada tiga cara untuk menentukan M, N

• Estimator otonomus: pilih M, N sehingga persamaan error keadaan estimator bebas terhadap r

Gambar 5.3: Estimator otonomus

Metode ini paling banyak dipakai. Jika \hat{x} mengestimasi cukup baik state x, maka error estimasi e akan bebas terhadap eksitasi eksternal; artinya e uncontrolable terhadap r.

$$\dot{e} = \dot{x} - \dot{\hat{x}}$$

$$= Ax + B(-K\hat{x} + Nr) - ((A - BK - LC)\hat{x} + Ly + Mr)$$

$$\dot{e} = (A - LC)e + BNr - Mr$$
(5.6)

Untuk menghilangkan r pada (5.6), dipilih M = BN. Dengan demikian persamaan kendalinya:

$$u = -K\hat{x} + Nr \tag{5.7}$$

$$\dot{\hat{x}} = (A - LC)\hat{x} + Bu + Ly \tag{5.8}$$

• Estimator error penjejakan (tracking - error): pilih M, N sehingga hanya error penjejakan e = r - y yang digunakan pada kendali

Gambar 5.4: Estimator error penjejakan

Pada kondisi ini, solusi diambil ketika misalnya sensor hanya bisa mengukur kesalahan keluaran (*output*). Kondisi ini terpenuhi dengan memilih N = 0 dan M = -L sehingga persamaan estimator menjadi

$$\hat{x} = (A - BK - LC)\hat{x} + L(y - r)$$
(5.9)

• Estimator penugasan zero (zero - assignment): pilih M, N sehingga zero - zero fungsi alih ditempatkan sesuai pilihan perancang kendali. i

Gambar 5.5: Estimator penugasan-zero

Metode ini memilih M dan N sesuai dengan penempatan zero dilokasi yang dikehendaki. Jika tidak ada estimator dan input acuan pada suatu sistem kendali, maka zero – zero sistem lup tertutupnya akan tetap seperti pada plant lup terbukanya. Disini, ditunjukkan pengaruh estimator terhadap zero-zero dengan menganalisa persamaan (5.4)-(5.5). Jika ada sebuah zero dari transmisi r ke u, maka akan ada zero transmisi dari r ke y kecuali jika ada sebuah pole yang posisinya sama dengan posisi zero. Oleh karena itu, cukup untuk mengutak-atik bagian kendali saja untuk melihat pengaruh pemilihan M, N pada zero – zero sistem. Persamaan untuk zero dari r ke u diberikan dengan mengeset y = 0 karena fokus pada pengaruh r

$$det \begin{bmatrix} sI - A + BK + LC & -M \\ -K & N \end{bmatrix} = 0$$
(5.10)

Karena N skalar dan determinan sama dengan nol, maka persamaan diatas identik dengan persamaan dibawah ini:

$$det \begin{bmatrix} sI - A + BK + LC - \frac{M}{N}K & -\frac{M}{N} \\ 0 & 1 \end{bmatrix} = 0,$$
$$det(sI - A + BK + LC - \frac{M}{N}K) = \gamma(s)$$
$$= 0 \quad (5.11)$$

Terlihat bahwa persamaan (5.13) merupakan persamaan karakteristik *error*, bertujuan mendapatkan gain estimator L dari penempatan *poles* estimato. Pemilihan M, N dipertimbangkan pada sistem dengan masukan acuan untuk polinomial zero $\gamma(s)$ di fungsi alih antara masukan acuan r dan kendali u.

Sebagai contoh, permasalahan menaikkan konstanta kecepatan ($veloc-ity \ contant, \ K_v$) melalui penugasan zeros ditunjukkan berikut ini. Sebelumnya untuk sistem tipe 1, berlaku error steady state dan konstanta kecepatan dari formula Truxal berikut :

$$e_{\infty} = \frac{1}{K_{v}}$$

$$\frac{1}{K_{v}} = \Sigma \frac{1}{z_{i}} - \Sigma \frac{1}{p_{i}}$$

$$(5.12)$$

$$(5.13)$$

Sebuah sistem orde dua

$$G(s) = \frac{1}{s(s+1)}$$

Diinginkan poles-nya terletak di s = -2+j2 dan s = -2-j2, $K_v = 10$. Sementara untuk sistem dengan poles tersebut berdasarkan persamaan (5.15), $K_v = 2$. Untuk itu, dengan penugasan zeros ditentukanlah z_3 . Konsekuensinya, disetlah pole, p_3 yang dijaga selisihnya $z_3 - p_3$ kecil supaya pengaruh terhadap tanggapan dinamik cukup kecil dan selisih $\frac{1}{z_3} - \frac{1}{p_3}$ menjadi cukup besar untuk mengubah K_v . Maka ditentukan $p_3 = -0.1$ dan sesai dengan persamaan Truxal

$$\frac{1}{K_v} = \frac{1}{z_3} - \frac{1}{2+j2} - \frac{1}{2-j2} - \frac{1}{-0.1}$$

$$z_3 = -0.096$$

Sehingga, fungsi alih lup tertutupnya menjadi

$$\frac{Y(s)}{R(s)} = K_1 \frac{s + 0.096}{(s + 2 + j2)(s + 2 - j2)(s + 0.1)}$$

Dengan menentukan $K_1 = 8.32$, diper
oleh tanggapan unit step sistem seperti dibawah

Gambar 5.6: Respon Step contoh penugasan-zero

5.1.2 Pemilihan Penguatan (Gain)

Untuk menentukan penguatan N berdasarkan 3 cara pemilihan M, jika cara pertama maka $u = -K\hat{x} + Nr$, keadaan estimasi sama dengan

keadaan nominal steady state, $\hat{x}_{ss} = x_{ss}$ sehingga bisa digunakan $N = N_u + KNx$ atau $u = N_u r - K(\hat{x} - N_x r)$. Jika dipilih cara ke-2, maka N = 0 dan jika cara ke-3 maka N diambil sehingga penguatan DC lup tertutupnya sama dengan satu. Persamaan sistemnya menjadi:

$$\begin{bmatrix} \dot{x} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} A - BK & BK \\ 0 & A - LC \end{bmatrix} \begin{bmatrix} x \\ e \end{bmatrix} + \begin{bmatrix} B \\ B - M \end{bmatrix} Nr(5.14)$$
$$y = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x \\ e \end{bmatrix}$$
(5.15)

dimana M bisa dipilih dari $\gamma(s)$ atau M = BN. Sistem lup tertutup mamiliki gain satu (*unity*) jika

$$-\begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} A - BK & BK \\ 0 & A - LC \end{bmatrix}^{-1} \begin{bmatrix} B \\ B - M \end{bmatrix} N = 1(5.16)$$

dan

$$N = \frac{1}{H(A - BK)^{-1}G[1 - K(A - LC)^{-1}(B - M)]}$$
(5.17)

5.2 Kendali Integral & Penjejakan Kokoh (*Robust Tracking*)

Metode pemilihan penguatan menghasilkan *error steady state* sama dengan nol untuk tanggapan unit *step* tetapi tidak kokoh akibat adanya perubahan pada parameter *plant*. Disini diperlukan kendali integral untuk penjejakan yang kokoh.

5.2.1 Kendali Integral

Pertimbangkan pemisahan (*augmenting*) vektor keadaan sesuai dinamika yang diinginkan, untuk sistem berikut:

$$\dot{x} = Ax + Bu + B_1 w$$
$$y = Cx$$

Diasumsikan tambahan ke
adaan integral $\boldsymbol{x}_{I},$ yang mempunyai persamaan differensial

$$\dot{x}_I = Cx - r = e$$

 dan

$$x_I = \int^t e dt$$

Maka persamaan augmentasinya

$$\begin{bmatrix} \dot{x}_I \\ \dot{x} \end{bmatrix} = \begin{bmatrix} 0 & C \\ 0 & A \end{bmatrix} \begin{bmatrix} x_I \\ x \end{bmatrix} + \begin{bmatrix} 0 \\ B \end{bmatrix} u - \begin{bmatrix} 1 \\ 0 \end{bmatrix} r + \begin{bmatrix} 0 \\ B_1 \end{bmatrix} (5.18)$$

dengan kendali umpan baliknya

$$u = -\begin{bmatrix} K_1 & K_2 \end{bmatrix} \begin{bmatrix} x_I \\ x \end{bmatrix} = K \begin{bmatrix} x_I \\ x \end{bmatrix}$$

Gambar 5.7: Kendali Integral

Sebagai contoh, sebuah plant dengan fungsi alih

$$\frac{Y(s)}{U(s)} = \frac{1}{s+3}$$

Diinginkan desain kendali integral untuk sistem tersebut, dengan dua pole dis=-5dan estimator dengan pole dis=10. Gangguan letaknya sama dengan kendali, maka solusinya

$$\begin{bmatrix} \dot{x}_I \\ \dot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_I \\ x \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} (u+w) - \begin{bmatrix} 1 \\ 0 \end{bmatrix} r$$

Selanjutnya, dapat kita tentukan gainkendali dan estimator dibawah ini:

$$det(sI - \begin{bmatrix} 0 & 1 \\ 0 & -3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} K) = s^{2} + 10s + 25$$
$$s - (-3) + L(1) = s + 10$$

maka $K = [25 \ 7]$ dan L = 7.

Respon sistem kendali integral dengan gangguan digambarkan berikut ini

Gambar 5.8: Respon Kendali Integral

5.2.2 Penjejakan Kokoh

Pada sub-bab sebelumnya, masukan acuan dan gangguan diatasi dengan kendali integral. Adapun pada sub-bab ini, teknik ruang-error untuk kendali penjejakan kokoh diaplikasikan pada proses penjejakan (*tracking*) masukan *nondecaying* dan untuk menolak gangguan *nondecaying* seperti unit step, tanjakan (*ramp*) ataupun sinyal sinusoidal.

Pertimbangkan sebuah sistem dengan ruang keadaan:

$$\dot{x} = Ax + Bu + B_1 w \tag{5.19}$$

$$y = Cx \tag{5.20}$$

dengan sinyal acuan yang memiliki persamaan diferensial tertentu dan kondisi awal yang tidak diketahui, semisal masukan dan gangguan berupa sinyal tanjakan ramp dengan kemiringan (slope) dan nilai awal yang tidak diketahui. Desain kendali bertujuan supaya sistem lup tertutup memiliki pole – pole spesifik, dapat menjejak acuan dan kemampuan untuk menolak gangguan (disturbance).

Kita fokuskan pada persamaan diferensial orde dua, masukan acuan dan gangguan masing-masing adalah

$$\ddot{r} + \alpha_1 \dot{r} + \alpha_2 r = 0 \tag{5.21}$$

$$\ddot{w} + \alpha_1 \dot{w} + \alpha_2 w = 0 \tag{5.22}$$

Selisih (error)

$$e = y - r \tag{5.23}$$

Permasalahan penjejakan terhadap r dan menolak gangguan w dapat ditunjukkan oleh *error steady state* sistem, dan trayektori e yang menuju nol meski adanya sedikit gangguan. Oleh karena model sistem senantiasa berubah secara praktis, maka isu kekokohan (*robustness*) menjadi sangat penting di dalam desain sistem kendali.

Selanjutnya, persamaan (5.23) diubah dengan menghilangkan rdan memunculkan esaja memanfaatkan persamaan (5.25) menjadi berikut ini

$$\ddot{e} + \alpha_1 \dot{e} + \alpha_2 e = \ddot{y} + \alpha_1 \dot{y} + \alpha_2 y \tag{5.24}$$

$$= C\ddot{x} + \alpha_1 C\dot{x} + \alpha_2 Cx \tag{5.25}$$

Dengan mendefinisikan keadaan ruang error

$$\xi = \ddot{x} + \alpha_1 \dot{x} + \alpha_2 x \tag{5.26}$$

maka

$$\ddot{e} + \alpha_1 \dot{e} + \alpha_2 e = C\xi \tag{5.27}$$

dan aksi kendali dalam ruang error

$$\mu = \ddot{u} + \alpha_1 \dot{u} + \alpha_2 u \tag{5.28}$$

Turunan dari persamaan (5.26) diatas sebagai berikut:

Selanjutnya, bentuk peubah keadaan standar dapat dirumuskan:

$$\dot{z} = Fz + G\mu \tag{5.30}$$

dimana

$$z = \begin{bmatrix} e & \dot{e} & \zeta^T \end{bmatrix}, F = \begin{bmatrix} 0 & 1 & 0 \\ -\alpha_2 & -\alpha_1 & C \\ 0 & 0 & A \end{bmatrix}$$
$$G = \begin{bmatrix} 0 \\ 0 \\ B \end{bmatrix}, \mu = -\begin{bmatrix} K_2 & K_1 & K_0 \end{bmatrix} \begin{bmatrix} e \\ \dot{e} \\ \zeta^T \end{bmatrix} = -Kz$$

dan aksi kendali berikut kendali integral dituliskan

$$u = -K_I \int^t e d\tau - K_0 x \tag{5.31}$$

Gambar 5.9: Kendali Integral menggunakan model internal

Contoh permasalahan, sebuah sistem servo dengan matrik ruang keadaan masing-masing:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$B_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = -\begin{bmatrix} 1 & 0 \end{bmatrix}, D = 0$$

diinginkan mengikuti acuan sinusoida yang memenuhi:

$$\ddot{r} + \omega^2 r = 0$$

dimana $\omega=1$ rad/det merupakan frekuensi sinyal acuan. Kemudian poles lup tertutupnya diinginkan terletak di-1+j, -1-j, -2+ $j\sqrt{2}, -2 - j\sqrt{2}.$

Dengan demikian diperoleh $\alpha_1 = 0, \alpha_2 = \omega^2$, dan

$$F = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\omega^2 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}, G = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Persamaan karakteristik lup tertutupnya, dengan $K = [K_2 K_1 K_{0_1} K_{0_2}]$:

$$det \begin{bmatrix} sI - F + GK \end{bmatrix} = (s + 1 - j)(s + 1 + j)(s + 2 - j\sqrt{2})(s + 2 + j\sqrt{2})(s + j\sqrt{$$

maka

$$K = \begin{bmatrix} 0.8 & 14 & -15 & 5 \end{bmatrix}$$

5.3 Soal Latihan

- 1. Dengan merujuk pada contoh permasalahan diatas, gambarkanlah blok diagramnya.
- 2. Sebuah pendulum sederhana dengan persamaan yang dilinearisasi, $\ddot{\theta} = \omega^2 \theta + u$ dimana θ, ω masing-masing posisi dan kecepatan ayunan
 - (a) Tulislah persamaan ruang keadaannya, mulai dengan mendefinisikan $\theta = x_1$ sebagai output dan seterusnya.
 - (b) Desainlah estimator dengan poles s = -5 + j5 dan s = -5 j5, nilai $\omega = 2$ rad/detik.
 - (c) Tulislah persamaan state estimatornya dan gambarkan blok diagram sistem dengan estimator tersebut

- (d) Desainlah kontroler sehingga lup tertutup sistem memiliki rasio redaman $\zeta=0.25$
- (e) Tambahkan kontroler soal no 1d) pada gambar blok diagram soal no 1c)
- 3. Sistem dengan persamaan differensial $\ddot{y} + 5\dot{y} + 6y = u$
 - (a) Tuliskan persamaan ruang keadaannya dengan mulai mendefinisikan $y = x_1$ sebagai output dan seterusnya.
 - (b) Desainlah kendali integral dan jika diinginkan poles kendali di s = -5, -5, -5 dengan gangguan yang masuk bersamaan dengan aksi kendali
 - (c) Gambarkanlah blok diagramnya secara detil sehingga mudah disimulasikan

Daftar Pustaka

- 1. K. Ogata, "Modern Control Engineering", Prentice Hall, 4th Edition, 2002
- 2. G. F. Franklin, J.D. Powell, A. Emami-Naeini, "Feedback Control of Dynamic Systems", Pearson, 6th Edition, 2010
- 3. N.S. Nise, "Control Systems Engineering", Wiley, 4th Edition, 2004
- 4. R.S. Burns, "Advanced Control Engineering", Butterworth-Heinemann, 2001

Lampiran Kode Program

 $\label{eq:mat4-1} \begin{array}{l} \mbox{function } dXdt = \mbox{pend}(ttemp, Xtemp) \\ \mbox{global } A \ B \ K \\ M {=} [A {-} B^{*} K] \\ dXdt = M^{*} Xtemp; \end{array}$

```
simulationglobal A B K
X0=[1;0];
[ttemp,Xtemp]=ode45('mat4-1', [0 10],X0)
t=ttemp;
x=[Xtemp(:,1) Xtemp(:,2)];
figure(1)
plot(t,x)
ylabel('Amplitudo')
xlabel('Amplitudo')
xlabel('Waktu')
grid on
legend('x1','x2')
```

mat4-2

 $A=[0 \ 1;-1 \ 0]; B=[0;1]; C=[1 \ 0]; D=0;$ $a=[A \ B; C \ D]; b=[0;0;1];$

```
N = inv(a)*b;
Nx = N(1:2,:)
Nu=N(3,:)
K = [3 4];
N-=Nu+K*Nx
An=A-B^{*}K:
Bn=B*N-
sys = ss(An, Bn, C, D)
[Y, T, X] = step(sys)
u = -K(1) X(:,1) - K(2) X(:,2) + N - ;
figure(1)
plot(T,X(:,1),'b-',T,X(:,2),'r-',T,0.25*u,'g-')
ylabel('Amplitudo')
xlabel('Waktu')
grid on
legend('x1', 'x2', 'u/4')
```

mat4-3

```
close all;clear all

zet=0

for k=1:96

zeta(k)=zet+0.01;

Mp(k) = exp((-pi * zeta(k))/(sqrt(1 - zeta(k) * zeta(k)))))

zet=zeta(k);

end

plot(zeta,Mp,'b-')

xlabel('rasio redaman')

ylabel('lonjakan/overshoot')
```

mat4-4

 $\begin{array}{l} num=1\\ den=conv([1\ 0\ 1],[1\ 0\ 1])\\ sys=tf(num,den)\\ rlocus(sys) \end{array}$

mat4-4a dominant second order A=[-1 -2 -2;0 -1 1;1 0 -1];B=[0;0;1];C=[1 0 0];D=0;

```
\begin{split} & sys = ss(A,B,C,0); \\ & step(sys^*(-1/0.8)) \\ & pc = [-0.707 + j^*0.707; -0.707 - j^*0.707; -10]/0.707; \\ & K = acker(A,B,pc); \\ & An = A - B^*K; \\ & sys1 = ss(An,B,C,0); \\ & figure(1) \\ & step(sys1^*(-1/0.142)) \\ & ylabel('Amplitudo') \\ & xlabel('Waktu') \\ & title('Pemilihan poles dengan dominant orde kedua') \end{split}
```

$mat4\text{-}4b~\mathrm{SRL}$

 $\begin{array}{ll} num1=1;den1=[1\ 1];num2=1;den2=[-1\ 1];\\ num=conv(num1,num2);den=conv(den1,den2);\\ sys=tf(num,den);\\ rlocus(sys) \end{array}$

mat4-5a kombinasi kendali dan estimator orde terkurangi function dXdt = kend-red-est(ttemp,Xtemp) global A Abb Aab B C K L M=[A-B*K zeros([2 1]);zeros([1 2]) Abb-L*Aab] dXdt = M*Xtemp;

```
\begin{array}{l} A=[0\ 1;-1\ 0]; B=[0;1]; C=[1\ 0]; Abb=0; Aab=1; \\ K=place(A,B,[-1\ -2]); L=5 \\ global\ A\ Abb\ Aab\ B\ C\ K\ L \\ X0=[0;-1;-1]; \\ [ttemp,Xtemp]=ode45('kend-red-est',[0\ 8],X0) \\ t=ttemp; \\ x=[Xtemp(:,1)\ Xtemp(:,2)\ Xtemp(:,3)]; \\ figure(1) \\ plot(t,x) \\ ylabel('Amplitudo') \\ xlabel('Waktu') \\ grid\ on \\ legend('xa','xb','xb-hat') \end{array}
```

Solusi Soal Latihan

Soal Bab 2

1. Soal No. 1

(a)

$$u(t) = Ri(t) + L\frac{di(t)}{dt} + \frac{1}{C}\int i(t)dt$$
$$y(t) = \frac{1}{C}\int i(t)dt$$

(b)

$$U(s) = RI(s) + sLI(s) + \frac{1}{sC}I(s)$$

$$Y(s) = \frac{1}{sC}I(s)$$

$$\frac{Y(s)}{U(s)} = \frac{1/sC}{R + sL + 1/sC} = \frac{1}{s^2 + 2s + 1}$$

2. Soal No.2

(a)

$$\Sigma F = ma$$

$$u(t) - kx(t) - b\frac{dx}{dt} = m\frac{d^2x}{dt^2}$$

(b)

$$U(s) = ms^{2}X(s) + bsX(s) + kX(s)$$

$$\frac{X(s)}{U(s)} = \frac{1}{ms^{2} + bs + k} = \frac{1/m}{s^{2} + (b/m)s + k/m}$$

jikam=1, b=4, k=3maka

$$\frac{X(s)}{U(s)} = \frac{1}{s^2 + 4s + 3} = \frac{1}{(s+1)(s+3)}$$

dan berdasarkan tabel2.1

$$x(t) = \frac{1}{2}(e^{-t} - e^{-3t})u(t)$$

3. Soal No. 3

(a) Aliran panas pada tungku oven dan dinding tungku oven

$$Q_T = \frac{\Theta_0 - \Theta_s}{R_T}$$
$$Q_s = C_T \frac{d\Theta_s}{dt}$$

Berlaku aliran kalor pada tungku dan dinding tungku

$$\frac{\Theta_0 - \Theta_s}{R_T} = C_T \frac{d\Theta_s}{dt}$$
$$\Theta_0 = R_T C_T \frac{d\Theta_s}{dt} + \Theta_s$$

(b) Fungsi alih

$$\frac{\Theta_0}{\Theta_s} = \frac{1}{sR_TC_T}$$

(c)

$$\Theta_s(t) = \frac{1}{R_T C_T} e^{-C_T R_T t}$$

4. Soal No. 4

(a)

$$e_{i}(t) = R_{1}i_{1}(t) + \frac{1}{C_{1}}\int i_{1}(t) - i_{2}(t)dt$$

$$\frac{1}{C_{1}}\int i_{2}(t) - i_{1}(t)dt = R_{2}i_{2}(t) + \frac{1}{C_{2}}\int i_{2}(t)dt$$

$$\frac{1}{C_{2}}\int i_{2}(t)dt = e_{o}(t)$$
(b)

$$E_{i}(s) = R_{1}I_{1}(s) + \frac{1}{sC_{1}}(I_{1}(s) - I_{2}(s))$$
$$\frac{1}{sC_{1}}(I_{2}(s) - I_{1}(s)) = R_{2}I_{2}(s) + \frac{1}{sC_{2}}I_{2}(s)$$
$$\frac{1}{sC_{2}}I_{2}(s) = E_{o}(s)$$

maka

$$\frac{E_o(s)}{E_i(s)} = \frac{\frac{1}{sC_2}}{R_1(1 - sC_1R_2 - \frac{C_1}{C_2}) - R_2 - \frac{1}{sC_2}}$$

(c) Untuk $R_1 = R_2 = 1, C_1 = C_2 = 1$

$$\frac{E_o(s)}{E_i(s)} = -\frac{1}{s^2 + s + 1}$$

dan sesuai tabel Laplace, dengan $\omega_n=1, \zeta=1/2 ({\rm sistem}$ orde dua)

$$e_o(t) = \frac{1}{\sqrt{1 - (1/2)^2}} e^{(1/2)t} \sin(\sqrt{1 - (1/2)^2})t$$

5. Soal No.5

(a)

$$\begin{split} \Sigma F &= m.a \\ u - ky - b\dot{y} &= m\ddot{y} \\ u &= m\ddot{y} + b\dot{y} + ky \end{split}$$

$$U(s) = ms^2 Y(s) + bsY(s) + kY(s)$$

$$\frac{Y(s)}{U(s)} = \frac{1}{ms^2 + bs + k}$$

(c) Terlihat bahwa sistem berorde dua dengan $\omega_n = \sqrt{k/m}, \zeta = (b/2m)\sqrt{m/k}$. Sesuai tabel transformasi Laplace

$$y(t) = -\frac{1}{\sqrt{1 - ((b/2m)\sqrt{m/k})^2}} e^{(b/2m)t}$$
$$sin(\sqrt{k/m}\sqrt{1 - ((b/2m)\sqrt{m/k})^2})$$

6. Soal No.6

(a)

$$v_i(t) = Ri(t) + L\frac{di(t)}{dt} + R_2i(t) + \frac{1}{C}\int i(t)dt$$

$$v_o(t) = R_2i(t) + \frac{1}{C}\int i(t)dt$$

$$\begin{aligned}
x_1 &= \int i(t)dt \\
\dot{x_1} &= i(t) = x_2 \\
\dot{x_2} &= \frac{di(t)}{dt} \\
\dot{x_2} &= v_i(t) - R_1 x_2 - R_2 x_2 - \frac{1}{C} x_1 \\
v_o(t) &= R_2 x_2 + \frac{1}{C} x_1
\end{aligned}$$

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{LC} & -\frac{R_1+R_2}{L} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{L} \end{bmatrix} v_i(t)$$
$$v_o(t) = \begin{bmatrix} \frac{1}{C} & R_2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

(c)

$$V_{i}(s) = R_{1}I(s) + sLI(s) + R_{2}I(s) + \frac{1}{sC}I(s)$$
$$V_{o}(s) = R_{2}I(s) + \frac{1}{sC}I(s)$$
$$\frac{V_{o}(s)}{V_{i}(s)} = \frac{R_{2} + \frac{1}{sC}}{R_{1} + sL + R_{2} + \frac{1}{sC}}$$

Soal Bab 3

Soal No. 1 Terlihat bahwa b₀ = 0, b₁ = 1, b₂ = 2, a₁ = 4, a₂ = 3
 (a) bentuk kanonik terkendali

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

(b) bentuk kanonik teramati

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & -3 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

(c) bentuk kanonik diagonal

$$\frac{(s+2)}{(s+1)(s+3)} = b_0 + \frac{c_1}{(s+1)} + \frac{c_2}{(s+3)}$$

maka $p_1 = 1, p_2 = 3, b_0 = 0, c_1 = 1/2, c_2 = 1/2$ sehingga

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

2. Soal No. 2

(a)

$$\frac{s+5}{(s+1)^2(s+2)(s+3)} = 0 + \frac{c_1}{(s+1)^2} + \frac{c_3}{s+2} + \frac{c_4}{s+4}$$

disini dapat diketahui bahwa $b_2 = 5, b_1 = 1, p_1 = 1, p_3 = 2, p_4 = 3$, adapun c_1, c_3, c_4 diperoleh dengan substitusi masingmasing s = -2, -3 dan -1, yakni $c_3 = 3, c_4 = 1/2, c_1 = 2$ maka

$$\begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \\ \dot{x}_{3}(t) \\ \dot{x}_{4}(t) \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ x_{3}(t) \\ x_{4}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 2 & 2 & 3 & 1/2 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ x_{3}(t) \\ x_{4}(t) \end{bmatrix}$$

(b)

$$\frac{s+1}{s^3+7s^2+16s+12} = \frac{s+1}{(s+2)^2(s+3)} = 0 + \frac{c_1}{(s+2)^2} + \frac{c_3}{s+3}$$

disini dapat diketahui bahwa $b_2 = 1, b_1 = 1, p_1 = 2, p_3 = 3$, adapun c_1, c_3 diperoleh dengan substitusi masing-masing s = -3 dan -2, yakni $c_3 = -2, c_1 = -1$ maka

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{bmatrix} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} -1 & -1 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix}$$

- 3. Soal No. 3 rank[B AB A²B]=3=n, maka controllable, dimana n adalah orde sistem. rank[C CA CA²]^T=2 \neq n, maka tidak observable. Fungsi alih $G(s) = \frac{s^2 + 5s + 4}{s^3 + 6s^2 + 11s + 6}$, tidak ada cancellation
- 4. Soal No. 4
 - (a)

$$\dot{x_1} = x_2$$

 $\dot{x_2} = -3x_1 - 4x_2 + u$
 $y = 2x_1 + x_2$

$$\dot{x_1} = -3x_2 + 2u$$

 $\dot{x_2} = -x_1 - 4x_2 + u$
 $y = x_2$

(c)

$$\begin{aligned} \dot{x_1} &= -x_1 + u \\ \dot{x_2} &= -3x_2 + u \\ y &= 1/2x_1 + 1/2x_2 \end{aligned}$$

5. Soal No. 5 Untuk soal 4a, $A=[0 \ 1;-3 \ -4];B=[0;1];C=[2 \ 1];$ sys=ss2tf(A,B,C,0)step(sys)

6. Soal No. 6

(a)

$$\ddot{y} = u - 2\dot{y} - y$$

$$u = \ddot{y} + 2\dot{y} + y$$

$$U(s) = (s^2 + 2s + 1)Y(s)$$

$$\frac{Y(s)}{U(s)} = \frac{1}{(s+1)}$$

(b) Dari nomor a diatas, dapat diketahu
i $\omega_n=1,\zeta=1$ dan $Y(s)=\frac{1}{s(s+1)^2}$ maka $y(t)=(1-e^t-te^t)$

(c) plot y(t) sebagai berikut

Soal Bab 4

1. Soal No. 1

$$\begin{aligned} \dot{x} &= Ax + Bu \\ y &= Cx \\ u &= -Kx \\ \dot{\hat{x}} &= A\hat{x} + Bu + L(\hat{y} - y) \end{aligned}$$

- $2. \ {\rm Soal \ No.} \ 2$
 - (a) Dari pers. (3.23) didapat $a_2 = 4, b_1 = 1$. Bentuk kanonik terkendali ruang ke adaannya menjadi

$$\begin{aligned} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -4 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) &= \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \end{aligned}$$

$$det(sI - A + BK) = (s + 2 - j2)(s + 2 + j2)$$
$$det\begin{pmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -4 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} K_1 & K_2 \end{bmatrix} = s^2 + 4s + 8$$
$$s^2 + sK_2 + 4 + K_1 = s^2 + 4s + 8$$
$$K = \begin{bmatrix} 4 & 4 \end{bmatrix}$$

3. Soal No. 3

$$\begin{bmatrix} N_x \\ N_u \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} N_{x_1} \\ N_{x_2} \\ N_u \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ -10 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} N_{x_1} \\ N_{x_2} \\ N_u \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$

4. Soal No. 4 Persamaan ruang keadaannya sebagai berikut:

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

(a) Untuk $\zeta=0.8,\,T_s=1.15$ maka didapat

$$\begin{aligned} \zeta \omega_n &\geq \frac{4.6}{1.15} \\ \omega_n &\geq 5 \ rad/s \end{aligned}$$

Persamaan karakteristiknya:

$$det(sI - A + BK) = s^2 + 2\zeta\omega_n s + \omega_n^2$$

dengan $K = \begin{bmatrix} K_1 & K_2 \end{bmatrix}$ maka

$$s^{2} - K_{2}s - K_{1} - 4 = s^{2} + 8s + 25$$

 $K = \begin{bmatrix} -29 & -8 \end{bmatrix}$

(b)

$$G_0(s) = C(sI - A)^{-1}B$$

maka

$$G_0(s) = \frac{-s-1}{s^2-4}$$
$$G_0(-s) = \frac{s-1}{s^2-4}$$

untuk nilai $\rho = 1.96$,

$$1 - 1.96 \frac{(s+1)(s-1)}{(s^2 - 4)^2} = 0$$

$$s^4 - 9.96s^2 + 17.96 = 0$$

maka akar-akar yang optimal $s_{1,2,3,4} = -2, 76, +2.76, -1.54, +1.54$

5. Soal No.5

$$\begin{bmatrix} \ddot{\theta} \\ \dot{\theta} \\ \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -\beta & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \theta \\ \dot{\theta} \\ x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \theta \\ \dot{\theta} \\ x \\ \dot{x} \end{bmatrix}$$

diperoleh $K = \begin{bmatrix} 13.67 \ 11.67 \ 2.67 \ 6.67 \end{bmatrix}$

- 6. Soal No. 6, silakan merujuk pada sub bab4.4.3
- 7. Soal No. 7

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

maka diperoleh

$$K = \begin{bmatrix} 1 & 3 \end{bmatrix}, L = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

Fungsi alih kompensator

$$D_{c}(s) = -K(sI - A + BK + LC)^{-1}L$$

$$= -\begin{bmatrix} 1 & 3 \end{bmatrix} (\begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \end{bmatrix}$$

$$+ \begin{bmatrix} 2 \\ 4 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix})^{-1} \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

$$= \frac{-14s + 2}{s^{2} + 3s + 2}$$

8. Soal No.8

Persamaan ruang keadaan dalam bentuk kanonik observable

$$\dot{x} = \begin{bmatrix} 0 & 4 \\ 1 & 0 \end{bmatrix} x + \begin{bmatrix} 4 \\ 0 \end{bmatrix} u,$$

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} x$$

Dari persamaan karakteristik $det(sI-A+BK) = \alpha_c \operatorname{dan} det(sI-A+LC) = \alpha_e$, diperoleh

$$K = \begin{bmatrix} 1 & 3 \end{bmatrix}, L = \begin{bmatrix} 5.5 \\ 6 \end{bmatrix}$$

Soal Bab 5

1. Soal No 1. Persamaan ruang kead

Persamaan ruang keadaannya:

$$\dot{z} = Fz + G\mu$$

$$\begin{bmatrix} \dot{e} \\ \ddot{e} \\ \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\omega^2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} e \\ \dot{e} \\ x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \mu$$

$$\mu = -\begin{bmatrix} K_2 & K_1 & K_{0_1} & K_{0_2} \end{bmatrix} \begin{bmatrix} e \\ \dot{e} \\ x_1 \\ x_2 \end{bmatrix}$$

Untuk model plant, berlaku beberapa persamaan berikut:

$$\dot{x}_1 = x_2 \dot{x}_2 = -x_2 + \mu + w u = -Kx = -K_{0_1}x_1 - K_{0_2}x_2$$

maka akan diperoleh struktur kendali servo dengan model internal

2. Soal No. 2

(a)

$$\begin{bmatrix} \dot{x_1} \\ \ddot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

(b)

$$det(sI - A + LC) = (s + 5 - j5)(s + 5 + j5)$$
$$det\left(\begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix} + \begin{bmatrix} L_1 \\ L_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix}\right) = s^2 + 10s + 50$$

maka

$$L = \left[\begin{array}{c} 10\\54 \end{array} \right]$$

$$\dot{\hat{x}} = A\hat{x} + Bu + L(\hat{y} - y)$$
$$\dot{x} = Ax + Bu$$
$$y = Cx$$
$$\hat{y} = C\hat{x}$$

(d) $\zeta=0.25$ dan $\omega=2$ rad/det maka persamaan karakteristiknya adalah $s^2+2\zeta\omega s+\omega^2=s^2+s+4,$ sehingga

$$det(sI - A + BK) = s^{2} + s + 4$$
$$det\begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} - \begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} K_{1} & K_{2} \end{bmatrix} = s^{2} + s + 4$$
$$det\begin{pmatrix} s & -1 \\ -4 & s \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ K_{1} & K_{2} \end{bmatrix} = s^{2} + s + 4$$
$$s^{2} + sK_{2} + K_{1} - 4 = s^{2} + s + 4$$

maka

(c)

$$K = \begin{bmatrix} 8 & 1 \end{bmatrix}$$

(e) Blok diagramnya sebagai berikut:

Daftar Gambar

1.1	Sistem Otomotif	2
1.2	Pergerakan Pesawat	3
1.3	Skema mesin uap sederhana	4
1.4	Gerak Kendaraan dan Diagram Badan Bebasnya	7
1.5	Sistem Kendali Lup Terbuka dan Tertutup	8
1.6	Konfigurasi umpan balik dan ekuivalennya $\ .\ .\ .\ .$	9
2.1	Skema dari resistor, induktor dan kapasitor	13
2.2	Rangkaian RC	14
2.3	Rangkaian RLC	15
2.4	Elastisitas linier: translasi dan rotasional	15
2.5	Redaman linier	16
2.6	Massa linier: percepatan translasi dan percepatan anguler	17
2.7	Sistem massa-redaman-pegas dan diagram <i>free-body</i> nya	18
2.8	Roda gila pada bantalan	19
2.9	Sistem perpindahan panas	20
2.10	Rangkaian RLC	25
2.11	Sistem mekanik	26
2.12	Sistem perpindahan panas, tungku dan oven	26
2.13	Rangkaian elektrik	27
2.14	Sistem mekanik	28
2.15	Sistem RLC	29

3.1	Blok Diagram Sistem Kendali	32
3.2	Struktur Ruang Keadaan	35
3.3	Diagram Blok Sistem Differensial Relasi Masukan-Keluaran	n 37
3.4	Rangkaian Listrik	41
4.1	Struktur Kendali dan Estimator	48
4.2	Trayektori keadaan (states) untuk $x_1(0) = 1, x_2(0) =$	
	$0, \omega_0 = 1 \dots \dots$	50
4.3	Tanggapan sistem terhadap masukan acuan unit step .	53
4.4	Overshoot vs ζ	55
4.5	Definisi beberapa parameter tanggapan sistem orde dua	55
4.6	Respon step sistem awal	57
4.7	Respon step dominasi <i>poles</i> orde dua	57
4.8	Pengaruh dominasi poles orde dua terhadap sistem	58
4.9	SRL untuk sistem $G(s) = \frac{1}{s+1}$	59
4.10	Respon step untuk sistem tanpa dan dengan kendali SRL	60
4.11	Estimator lup terbuka	61
4.12	Desain estimator dengan umpan balik	62
4.13	Tayektori <i>state</i> estimasi \hat{x}_1 dan \hat{x}_2 , dengan $\hat{x}(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$	63
4.14	Tayektori <i>state</i> estimasi \hat{x}_b	66
4.15	SRL estimator	68
4.16	Trayektori x_a, x_b, \hat{x}_b	71
4.17	Kombinasi kendali dan estimator	72
5.1	Desain kompensator dengan masukan acuan, struktur	
	feedback	78
5.2	Desain kompensator dengan masukan acuan, struktur	
	feed forward	78
5.3	Estimator otonomus	79
5.4	Estimator error penjejakan	80
5.5	Estimator penugasan-zero	81
5.6	Respon Step contoh penugasan-zero	83
5.7	Kendali Integral	85
5.8	Respon Kendali Integral	86
5.9	Kendali Integral menggunakan model internal	89