
 

 

 

 

Abstract— This paper deals with the problem of 

robust guaranteed cost filter design for uncertain 

neutral systems with time-varying delay. The 

uncertainties are assumed to be norm bounded. We 

propose a sufficient condition for robust stability 

analysis and robust stabilization on the filter 

design, and the methods are derived in linier 

matrix inequalities (LMIs). The obtained result 

covers slow and fast time-varying delay cases by 

using Leibniz-Newton formula and some free-

weighting matrices. A numerical example is given 

to illustrate the advantage of the proposed method. 

I. INTRODUCTION 

UE to the fact that the uncertainties and time-

delay phenomena are frequently causing complex 

behaviors such as bad performance and instability 

in control systems and signal processing, the robust 

stability analysis and robust stabilization have drawn 

considerable attention in recent years. In the filter 

design, dynamics of the system states are estimated 

from actual output and the most faced-problems in this 

filtering scheme is that the output signals are corrupted 

by noise, disturbance, time-delay and parameter 

uncertainties [1]. Hence, it is desirable to design a 

controller or a filter which not only achieves the 

stability of the uncertain system but also guarantees an 

adequate level of performance. One of the possible 

approaches to solve this kind of problem is the 

guaranteed cost control or filter method [2], [3]. 

In the past decades, LMI approaches based on 

convex optimization solution have been used to 

analyze the stability of various dynamic systems. 

Many complex problems in system and control theory 

can be simplified by LMIs form. By using this 

approach, the feasible solutions can be found 

effectively [4].  

The system whose dynamics depend on the delay of 

the state is the retarded-type system. Otherwise, the 

neutral time-delay system is the system with the 

dynamics depends on the delays of the state and its 

derivative. The type of this system can be found in  

many fields of engineering and technology such as 

 
 

chemical process modeling, networked control 

systems, robotic implementation in random 

environment, etc. Some reported results concerning on 

robust stability analysis and robust stabilization of the 

uncertain neutral time-delay systems are [5]-[7] and 

references therein.  

Research on filter design considering stability 

analysis has started. In [3], robust guaranteed cost 

filtering problems for uncertain systems with time-

varying delay was presented in LMI terms. The 

derivative of the time-varying delay was restricted to 

be less than one such that it leads to the conservative 

constrain. In [1], robust filtering problem for uncertain 

nonlinear systems was presented by using a 

polynomial Lyapunov function and a relaxation 

technique. In [8], H∞ filter design for systems with a 

time-varying delay was derived and extended to the 

systems with polytopic-type uncertainties. Robust H∞ 

filter design for uncertain systems with time-varying 

delays was proposed in [9]. In [10], a delay-dependent 

H∞ filtering design for linear neutral system was 

presented. However, the guaranteed cost filter design 

for uncertain neutral systems with time-varying delays 

has never been presented.  

In this paper, we propose a design method of robust 

guaranteed cost filter for uncertain neutral systems 

with time-varying delay. The stabilization criteria are 

determined by a Lyapunov function and an LMI 

approach. Based on Leibniz-Newton formula and 

some free-weighting matrices, the derivative of time-

varying delay is relaxed to any value. It enables this 

filter design appropriate for systems with fast and slow 

time varying delays. The upper bound of guaranteed 

cost of the considered systems is obtained. An 

illustrative example is given to demonstrate the merits 

of our proposed method.  

Notations Throughout the paper, the superscripts 

‖T‖ and ‖ − 1 ‖ stand for matrix transpose and  

inverse,  
n denotes the n-dimensional Euclidean 

space, X >Y or X ≥ Y means that X−Y is positive 

definite or semi-positive definite, I is an identity 

matrix with appropriate dimensions, and * represents 

the symmetric elements in a symmetric matrix. 
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II. PROBLEM STATEMENT 

Consider a continuous-time uncertain neutral system 

with time-varying delay 

))(())(()())(()( thtxtAAtxtAAtx dd   
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where )(th  is a time-varying delay,   is a neutral 

delay, hth  )(0 , dth )( , h  and d  are known 

values, 
ntx )(  is the state vector, ntx )( , 

nty )( is the measured output vector, 

n

nd AAA ,, are the real constant matrices with 

appropriate dimensions which represent the nominal of 

neutral time-delay system, )()( ttx  is a given 

continuous vector-valued initial function, C  is a 

known constant real-valued matrix with appropriate 

dimension. Matrices )(),(),( tAtAtA nd  denote 

real norm-bounded matrix functions representing 

parameter uncertainties. It is assumed that 
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with satisfying the inequalities 
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where 
AnAdAAnAdA EEEDDD ,,,,,  are constant 

real-valued known matrices with appropriate 

dimensions, and )(),(),( tFtFtF AnAdA
 are real time-

varying unknown continuous and deterministic 

matrices. 

In this paper, we consider an asymptotically stable 

filter for system (1)-(3) above in the following forms 
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where G and K are filter variables. 

Suppose error state vector and its derivative as 

follows 
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The signal to be estimated and the upper bound of 

guaranteed cost to be minimized are given by 
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where )(tz is the error state output and L is a given 

matrix. 

In the sequel, some lemmas which will be useful for 

the proof are needed. 

Lemma 2.1., (see [5]). Let D and E be matrices of 

appropriate dimensions, and F be a matrix function 

satisfying IFF T   

Then for any positive scalar , the following 

inequality holds 

EEDDDFEDFE TTTTT 1     (10) 

Lemma 2.2., (see [11]). Related to the Leibniz-Newton 

formula, the following relation holds 
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where 
21 , NN  are free-weighting appropriate 

dimensioned matrices. 

III. MAIN RESULTS 

In this section, a sufficient condition is established for 

the existence of guaranteed cost filter and its upper 

bound of the guaranteed cost. The main result of this 

study is given by Theorem 3.1. 

Theorem 3.1.  

If the following matrix inequalities optimization  

problem;
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and using variable changes ,, 3311 XGRXGR   

,,,, 44331144 YKRYKRYKRXGR  then the system 

(5) is a guaranteed cost filter with an upper bound of 

the guaranteed cost 
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Remark 3.1: Since (12) and (13) have a constraint of 

the relationship of the inverse, an iterative algorithm 

via LMI approach, [12] is used based on a 

complementarity problem in [13]. 

Remark 3.2: The derivative of time-varying delay is 

relaxed by using Newton-Leibniz formula and some 

free-weighting semi-positive definite matrices N1 and 

N2. It is worthy for slow and fast time-varying delay 

cases [11]. 

 

Proof of Theorem 3.1. 

Equations (1)-(3) and (5)-(7) yield the filtering error 

dynamics 
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where 
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Define a candidate of Lyapunov function 
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where  TTT exw )()()(    

The time derivative of (16) along to (15) is calculated 

as 

)(
0

0
)()(

0

0
)(2)(

2

2

1

1
tw

R

P
twtw

R

P
twtV TT


















   

))((
0

0
))(())(1(

2

2
thtw

R

P
thtwth T 








   

)(
0

0
)()(

0

0
)(

3

3

3

3
 

















 tw

R

P
twtw

R

P
tw TT   

dssw
R

P
swtw

R

P
twh

t

tht

TT























)( 4

4

4

4
)(

0

0
)()(

0

0
)(                                                                          

 

(17) 

Since ,)( dth  this following inequality is bounded 
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We need to relax 0)1(  d  such that the LMIs 

have the less conservative results. It is done by using 

Leibniz-Newton formula and some free-weighting 

matrices as the following descriptions. 

Consider Leibniz-Newton formula 
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To obtain a less conservative stabilization criterion, 

Lemma 2.2 is recalled. 

Further, add Lemma 2.2 to (16) 
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From (20), it is notified that 
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is positive, then 

the first term on the right-hand must be negative. 

Now, introduce )(tp and )(t to rewrite (20) 
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Under the condition 
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equation (21) leads to 
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for any 0)( tz  and the filtering error dynamics is 

asymptotically stable. 

Applying Lemma 2.1. to (21) for any positive scalars 
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and using Schur Complement of Boyd et al. [4], 

inequality (12) is obtained. 

Further, integrating (23) from 0 to t and as t tends to 

the infinity 
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where J* denotes the guaranteed cost and the 

following equations are defined, 
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It is obvious that (26) corresponds to (13). 

IV. AN ILLUSTRATIVE EXAMPLE 

Consider a system (1)-(3) with 
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A. A slow time-varying delay 

In the case of a slow time-varying delay: h = 0.5, d = 

0.1, τ = 0.5, we have the following results. 

From (26), it is easily obtained 
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Applying Theorem 3.1, we have 
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Figures 1-2 show the trajectories of states and their 

estimate errors for slow time-varying delay case. It is 

seen that the system is converged to the stable state. 

B. A fast time-varying delay 

In the case of a fast time-varying delay case: h = 1.5,  

d = 1.1, τ = 0.5 we have the results as follows. 

Similar with a slow time-varying delay case, we find 
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Fig. 1. Trajectories of states x1 (—) and x2 (- -). 

Fig. 2. Trajectories of estimate errors e1 (—) and e2 (- -). 

V. CONCLUSION 

This paper discusses a guaranteed cost filter design for 

uncertain neutral systems with time-varying delay. A 

sufficient condition for the guaranteed cost filter is 

derived on the basis of the LMI feasible solutions. The 

optimal cost is provided by minimizing the upper 



 

 

 

bound of the guaranteed cost. A numerical example is 

given to illustrate the proposed method. 
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