An LMI approach to optimal guaranteed cost control of multirate sampling systems

Mitsuaki Ishitobi ${ }^{1}$, Tatsuhiro Tamura ${ }^{1}$, Erwin Susanto ${ }^{2}$ and Sadaaki Kunimatsu ${ }^{1}$
${ }^{1}$ Department of Mechanical Systems Engineering, Kumamoto University, Kumamoto, Japan (Tel: +81-96-342-3777; E-mail: mishi@kumamoto-u.ac.jp)
${ }^{2}$ Department of Electrical Engineering, Telkom Institute of Technology, Bandung, Indonesia

Abstract

This paper considers a design method of a guaranteed cost controller for multirate sampling systems. A minimal order multirate observer is used to estimate a state vector at the output sampling period. The controller and the observer are obtained by using a linear matrix inequality technique. A numerical example illustrates the effectiveness of the proposed method.

Keywords: guaranteed cost control, multirate systems, LMI, a minimal order observer

1. INTRODUCTION

Instability and bad performance can occur in a closedloop feedback control system with uncertainties. Therefore, considerable interests have been attracted to studies of robust controller design in recent decades. Moreover, it is desirable to design a controller which not only achieves the stability of the uncertain system but also guarantees an adequate level of performance. One of the approaches to solve this problem is a guaranteed cost control method [1]. Many significant results have been shown for the continuous-time case [2], [3] and for the single rate sampling discrete-time case [4], [5], [6].

Multirate sampling schemes have long been the focus of interest by many control designers [7], [8], [9], [10]. This paper considers a design method of a guaranteed cost controller for multirate systems. The controller is obtained in the basis of a multirate state-space model and the state variable is estimated by a minimal order multirate observer. The design problem is expressed by matrix inequalities and solved by an algorithm of a linear matrix inequality technique. This paper extends the previous results [11] to systems with uncertainties in the input term.

2. PROBLEM STATEMENT

Consider a discrete-time uncertain system in the form

$$
\begin{align*}
\boldsymbol{x}(k+1) & =\left(A_{0}+\Delta A_{0}\right) \boldsymbol{x}(k)+\left(B_{0}+\Delta B_{0}\right) \boldsymbol{u}(k) \\
\boldsymbol{y}(k) & =C \boldsymbol{x}(k) \tag{1}
\end{align*}
$$

Assume the output sampling period is greater than that of the input and only $\boldsymbol{y}(i N)$ is available for $i=0,1, \cdots$ where N is a positive integer greater than one and $i N$ means the time $i N T_{s}$ where T_{s} denotes a sampling period. Then, the output-based form of (1) can be written as follows

$$
\begin{align*}
\boldsymbol{x}(k+N) & =(A+\Delta A) \boldsymbol{x}(k)+(B+\Delta B) \boldsymbol{v}(k) \\
\boldsymbol{y}(k) & =C \boldsymbol{x}(k) \tag{2}
\end{align*}
$$

where

$$
\begin{align*}
A & =A_{0}^{N} \\
\Delta A & =\left(A_{0}+\Delta A_{0}\right)^{N}-A_{0}^{N} \tag{3}
\end{align*}
$$

$$
\begin{align*}
B= & {\left[B_{0}, A_{0} B_{0}, \cdots, A_{0}^{N-1} B_{0}\right] } \\
\Delta B= & {\left[\Delta B_{0},\right.} \\
& \left(A_{0}+\Delta A_{0}\right)\left(B_{0}+\Delta B_{0}\right)-A_{0} B_{0}, \\
& \cdots,\left(A_{0}+\Delta A_{0}\right)^{N-1}\left(B_{0}+\Delta B_{0}\right) \\
& \left.-A_{0}^{N-1} B_{0}\right] \tag{4}\\
\boldsymbol{v}(k)= & {\left[\boldsymbol{u}^{T}(k+N-1), \boldsymbol{u}^{T}(k+N-2),\right.} \\
& \left.\cdots, \boldsymbol{u}^{T}(k)\right]^{T}
\end{align*}
$$

Matrices A_{0}, and B_{0} are known constant real-valued matrices with appropriate dimensions, and C is restricted to the form of $C=\left[\begin{array}{ll}O & I_{m}\end{array}\right]$.

We assume that the parameter uncertainties ΔA_{0} and ΔB_{0} satisfy the following relations

$$
\begin{equation*}
\Delta A_{0}=D_{A} F_{A} E_{A}, \Delta B_{0}=D_{B} F_{B} E_{B} \tag{5}
\end{equation*}
$$

where F_{A} and F_{B} are unknown and deterministic matrices satisfying

$$
\begin{equation*}
F_{A}^{T} F_{A} \leq I, F_{B}^{T} F_{B} \leq I \tag{6}
\end{equation*}
$$

and D_{A}, E_{A} are constant real-valued known matrices with appropriate dimensions.

It is also assumed that the initial state variable $\boldsymbol{x}(0)$ is unknown, but their mean and covariance are known, respectively as

$$
\begin{align*}
E[\boldsymbol{x}(0)] & =\boldsymbol{m}_{0} \tag{7}\\
E\left[\left(\boldsymbol{x}(0)-\boldsymbol{m}_{0}\right)\left(\boldsymbol{x}(0)-\boldsymbol{m}_{0}\right)^{T}\right] & =\Sigma_{0}>O \tag{8}
\end{align*}
$$

where $E[\cdot]$ denotes the expected value operator.
The problem considered here is to design a minimal order observer

$$
\begin{align*}
\boldsymbol{z}(k+N) & =D \boldsymbol{z}(k)+E \boldsymbol{y}(k)+\sum_{i=0}^{N-1} H_{i} \boldsymbol{u}(k+i) \tag{9}\\
\hat{\boldsymbol{x}}(k) & =P \boldsymbol{z}(k)+W \boldsymbol{y}(k) \tag{10}
\end{align*}
$$

and a controller

$$
\begin{equation*}
\boldsymbol{v}(k)=K \hat{\boldsymbol{x}}(k) \tag{11}
\end{equation*}
$$

with

$$
K=\left[\begin{array}{c}
K_{N-1} \\
\vdots \\
K_{1} \\
K_{0}
\end{array}\right], A=\left[\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], D=A_{11}+L A_{21}
$$

$$
H_{i}=T A_{0}^{N-1-i} B_{0}, T A-D T=E C
$$

$$
T=\left[I_{n-m} L\right], P T+W C=I_{n}, P=\left[I_{n-m} O\right]^{T}
$$

so as to achieve an upper bound on the following quadratic performance index

$$
\begin{align*}
E[J] & = \\
& E\left[\sum_{l=0}\left\{\boldsymbol{x}^{T}(N l) Q \boldsymbol{x}(N l)+\boldsymbol{v}^{T}(N l) R \boldsymbol{v}(N l)\right\}\right] \tag{12}
\end{align*}
$$

associated with the multirate systems (2), where Q and R are given symmetric positive-definite matrices.

3. MAIN RESULTS

Attention of this study is restricted to $N=2$ for simplicity of description. Extension to the general case of $N \geq 3$ is complicated though the basic idea is the same. The main result of this study is given by Theorem 1.
Theorem 1. If the following matrix inequalities optimization problem; $\min \left\{\gamma_{0}+\gamma_{1}\right\}$ subject to

$$
\left[\begin{array}{ccccc}
\Lambda_{11} & 0 & A^{T}+K^{T} B^{T} & 0 & K^{T} \\
& \Lambda_{22} & P^{T} K^{T} B^{T} & A_{11}^{T}+A_{21}^{T} L^{T} P^{T} K^{T} \\
& & \Lambda_{33} & 0 & 0 \\
& & & \Lambda_{44} & 0 \\
* & & & & -R^{-1}
\end{array}\right]
$$

$$
\begin{aligned}
\Lambda_{11}= & -S_{1}+Q+Y_{1}+Y_{2}+Y_{3}+Y_{4}+Y_{5} \\
& +Y_{10}+Y_{12}+Y_{14}+Y_{16} \\
& +\left(\epsilon_{1, \text { inv }}+\epsilon_{4, \text { inv }}+\epsilon_{6, \text { inv }}\right) E_{A}^{T} E_{A} \\
& +\left(\epsilon_{2, \text { inv }}+\epsilon_{5, \text { inv }}\right) A_{0}^{T} E_{A}^{T} E_{A} A_{0} \\
\Lambda_{22}= & -S_{2}+Y_{17}+Y_{18}+Y_{19}+Y_{20}+Y_{22} \\
& +Y_{24}+Y_{26}+Y_{28} \\
\Lambda_{33}= & -S_{1, \text { inv }}+\left(\epsilon_{2}+\epsilon_{3}+\delta_{3}+\delta_{4}+\delta_{11}\right. \\
& \left.+\delta_{12}\right) D_{A} D_{A}^{T}+\epsilon_{1} A_{0} D_{A} D_{A}^{T} A_{0}^{T} \\
& +\left(\delta_{1}+\delta_{9}\right) D_{B} D_{B}^{T} \\
& +\left(\delta_{2}+\delta_{10}\right) A_{0} D_{B} D_{B}^{T} A_{0}^{T} \\
\Lambda_{44}= & -S_{2, \text { inv }}+Y_{6}+Y_{7}+Y_{8}+Y_{9}+Y_{11} \\
& +Y_{13}+Y_{15}+Y_{21}+Y_{23}+Y_{25}+Y_{27}
\end{aligned}
$$

$$
\left[\begin{array}{cc}
-Y_{1}+\mu_{6, \text { inv }} E_{A}^{T} E_{A} & 0 \\
0 & -\epsilon_{3} I+\mu_{6} E_{A} D_{A} D_{A}^{T} E_{A}^{T}
\end{array}\right] \leq 0
$$

$$
\left[\begin{array}{cc}
-Y_{5}+X_{1} & 0 \\
0 & -\delta_{4} I+\mu_{1} E_{A} D_{B} E_{A}^{T} D_{B}^{T}
\end{array}\right] \leq 0
$$

$$
\begin{align*}
& {\left[\begin{array}{cc}
-X_{1} & K_{2}^{T} E_{B}^{T} \\
* & -\mu_{1} I
\end{array}\right] \leq 0,\left[\begin{array}{cc}
-X_{2} & T D_{A} \\
* & -\mu_{2} I
\end{array}\right] \leq 0} \\
& {\left[\begin{array}{cc}
-X_{3} & K_{2}^{T} E_{B}^{T} \\
* & -\mu_{3} I
\end{array}\right] \leq 0,\left[\begin{array}{cc}
-X_{4} & P^{T} K_{2}^{T} E_{B}^{T} \\
* & -\mu_{4} I
\end{array}\right] \leq 0} \\
& {\left[\begin{array}{cc}
-X_{5} & P^{T} K_{2}^{T} E_{B}^{T} \\
* & -\mu_{5} I
\end{array}\right] \leq 0} \tag{15}
\end{align*}
$$

$$
\begin{equation*}
-\gamma_{0}+\boldsymbol{v}_{1}^{T} S_{1} \boldsymbol{v}_{1}+\boldsymbol{v}_{2}^{T} S_{1} \boldsymbol{v}_{2}+\cdots++\boldsymbol{v}_{n}^{T} S_{1} \boldsymbol{v}_{n}<0 \tag{16}
\end{equation*}
$$

$$
\left[\begin{array}{ccccc}
-\gamma_{1} & \boldsymbol{w}_{2}^{T} T^{T} & \boldsymbol{w}_{2}^{T} T^{T} & \cdots & \boldsymbol{w}_{n}^{T} T^{T} \tag{17}\\
* & -S_{2, i n v} & & & \\
* & & -S_{2, i n v} & & \\
\vdots & & & \ddots & \\
* & & & & -S_{2, i n v}
\end{array}\right]<0
$$

where

$$
\begin{align*}
{\left[\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{n}
\end{array}\right] } & :=\left(\Sigma_{0}+\boldsymbol{m}_{0} \boldsymbol{m}_{0}^{T}\right)^{\frac{1}{2}} \tag{18}\\
{\left[\begin{array}{llll}
\boldsymbol{w}_{1} & \boldsymbol{w}_{2} & \cdots & \boldsymbol{w}_{n}
\end{array}\right] } & :=\Sigma_{0}^{\frac{1}{2}} \tag{19}
\end{align*}
$$

has a set of solutions $S_{1}>0, S_{2}>0, S_{1, \text { inv }}>0$, $S_{2, \text { inv }}>0, K, L, T, X_{1}, \cdots, X_{5}, Y_{1}, \cdots, Y_{28}, \epsilon_{1}>0$,

$$
\begin{align*}
& {\left[\begin{array}{cc}
-Y_{8}+X_{2} & 0 \\
0 & -\epsilon_{6, \text { inv }} I+\mu_{2} D_{A}^{T} E_{A}^{T} E_{A} D_{A}
\end{array}\right] \leq 0} \\
& {\left[\begin{array}{cc}
-Y_{16}+X_{3} & 0 \\
0 & -\delta_{8} I+\mu_{3} E_{A} D_{B} E_{A}^{T} D_{B}^{T}
\end{array}\right] \leq 0} \\
& {\left[\begin{array}{cc}
-Y_{20}+X_{4} & 0 \\
0 & -\delta_{12} I+\mu_{4} E_{A} D_{B} E_{A}^{T} D_{B}^{T}
\end{array}\right] \leq 0} \\
& {\left[\begin{array}{cc}
-Y_{28}+X_{5} & 0 \\
0 & -\delta_{16} I+\mu_{5} E_{A} D_{B} E_{A}^{T} D_{B}^{T}
\end{array}\right] \leq 0} \\
& {\left[\begin{array}{cc}
-Y_{2} & K_{1}^{T} E_{B}^{T} \\
* & -\delta_{1} I
\end{array}\right] \leq 0,\left[\begin{array}{cc}
-Y_{3} & K_{2}^{T} E_{B}^{T} \\
* & -\delta_{2} I
\end{array}\right] \leq 0} \\
& {\left[\begin{array}{cc}
-Y_{4} & K_{2}^{T} B_{0}^{T} E_{B}^{T} \\
* & -\delta_{3} I
\end{array}\right] \leq 0,\left[\begin{array}{cc}
-Y_{6} & T A_{0} D_{A} \\
* & -\epsilon_{4, \text { inv }} I
\end{array}\right] \leq 0} \\
& {\left[\begin{array}{cc}
-Y_{7} & T D_{A} \\
* & -\epsilon_{5, \text { inv }} I
\end{array}\right] \leq 0,\left[\begin{array}{cc}
-Y_{9} & T D_{B} \\
* & -\delta_{5, \text { inv }} I
\end{array}\right] \leq 0} \\
& {\left[\begin{array}{cc}
-Y_{10} & K_{1}^{T} E_{B}^{T} \\
* & -\delta_{5} I
\end{array}\right] \leq 0,\left[\begin{array}{cc}
-Y_{11} & T A_{0} D_{B} \\
* & -\epsilon_{6, \text { inv }} I
\end{array}\right] \leq 0} \\
& {\left[\begin{array}{cc}
-Y_{12} & K_{2}^{T} E_{B}^{T} \\
* & -\delta_{6} I
\end{array}\right] \leq 0,\left[\begin{array}{cc}
-Y_{13} & T D_{A} \\
* & -\delta_{7, i n v} I
\end{array}\right] \leq 0} \\
& {\left[\begin{array}{cc}
-Y_{14} & K_{2}^{T} B_{0}^{T} E_{A}^{T} \\
* & -\delta_{7} I
\end{array}\right] \leq 0,\left[\begin{array}{cc}
-Y_{15} & T D_{A} \\
* & -\delta_{8, \text { inv }} I
\end{array}\right] \leq 0} \\
& {\left[\begin{array}{cc}
-Y_{17} & P^{T} E_{B}^{T} \\
* & -\delta_{9} I
\end{array}\right] \leq 0,\left[\begin{array}{cc}
-Y_{18} P^{T} & K_{2}^{T} E_{B}^{T} \\
* & -\delta_{10} I
\end{array}\right] \leq 0} \\
& {\left[\begin{array}{cc}
-Y_{19} P^{T} & K_{2}^{T} B_{0}^{T} E_{A}^{T} \\
* & -\delta_{11} I
\end{array}\right] \leq 0,\left[\begin{array}{cc}
-Y_{21} & T D_{B} \\
* & -\delta_{13, i n v} I
\end{array}\right] \leq 0} \\
& {\left[\begin{array}{cc}
-Y_{22} P^{T} K_{1}^{T} E_{B}^{T} \\
* & -\delta_{13} I
\end{array}\right] \leq 0,\left[\begin{array}{cc}
-Y_{23} & T A_{0} D_{B} \\
* & -\delta_{14, i n v} I
\end{array}\right] \leq 0} \\
& {\left[\begin{array}{cc}
-Y_{24} & P^{T} K_{2}^{T} E_{B}^{T} \\
* & -\delta_{14} I
\end{array}\right] \leq 0,\left[\begin{array}{cc}
-Y_{25} & T D_{A} \\
* & -\delta_{15, i n v} I
\end{array}\right] \leq 0} \\
& {\left[\begin{array}{cc}
-Y_{26} P^{T} & K_{2}^{T} B_{0}^{T} E_{A}^{T} \\
* & -\delta_{15} I
\end{array}\right] \leq 0,\left[\begin{array}{cc}
-Y_{27} & T D_{A} \\
* & -\delta_{16, i n v} I
\end{array}\right] \leq 0} \tag{14}
\end{align*}
$$

$\cdots, \epsilon_{3}>0, \epsilon_{1, i n v}>0, \epsilon_{2, i n v}>0, \epsilon_{4, i n v}>0, \cdots$, $\epsilon_{6, \text { inv }}>0, \delta_{1}>0, \cdots, \delta_{16}>0, \delta_{5, \text { inv }}>0, \cdots$, $\delta_{8, i n v}>0, \delta_{13, i n v}>0, \cdots, \delta_{16, i n v}>0, \mu_{1}>0, \cdots$, $\mu_{5}>0, \gamma_{0}, \gamma_{1}$, which satisfy the inverse relation such as $S_{1}^{-1}=S_{1, i n v}, S_{2}^{-1}=S_{2, i n v}, \epsilon_{1}^{-1}=\epsilon_{1, i n v}, \epsilon_{2}^{-1}=$ $\epsilon_{2, i n v}, \delta_{5}^{-1}=\delta_{5, i n v}, \cdots, \delta_{8}^{-1}=\delta_{8, i n v}, \delta_{13}^{-1}=\delta_{13, i n v}$, $\cdots, \delta_{16}^{-1}=\delta_{16, \text { inv }}, \mu_{6}^{-1}=\mu_{6, \text { inv }}$, then the minimal order observer-based control law (9)-(11) is a guaranteed cost controller which gives the minimum expected value of the guaranteed cost

$$
\begin{equation*}
\left.E\left[J^{*}\right]=E\left[\boldsymbol{x}^{T}(0) Q \boldsymbol{x}(0)+\boldsymbol{v}^{T}(0) R \boldsymbol{v}(0)\right)\right] \tag{20}
\end{equation*}
$$

Remark 1: Since (13)-(17) have a constraint of the inverse relations and nonlinear terms, a cone complementarity linealization algorithm is introduced to solve [12], [13].

Before giving a proof of Theorem 1, a key lemma is introduced.
Lemma 1 [14]. Given matrices D and E of appropriate dimensions, and F be a matrix function satisfying $F^{T} F \leq I$, then for any $\alpha>0$, the following inequality holds

$$
D F E+E^{T} F^{T} D^{T} \leq \alpha D D^{T}+\alpha^{-1} E^{T} E .
$$

Proof of Theorem 1 .

From (11) we have

$$
\begin{align*}
\boldsymbol{v}(k) & =K \hat{\boldsymbol{x}}(k) \\
& =K\{P \boldsymbol{\xi}(k)+\boldsymbol{x}(k)\} \tag{21}
\end{align*}
$$

where $\boldsymbol{\xi}(k)=\boldsymbol{z}(k)-T \boldsymbol{x}(k)$ is the estimated error of the minimal order observer. Then, using (21) and (2), we obtain

$$
\begin{aligned}
\boldsymbol{x}(k+2)= & (A+\Delta A) \boldsymbol{x}(k)+(B+\Delta B) \boldsymbol{v}(k) \\
= & \{(A+\Delta A)+(B+\Delta B) K\} \boldsymbol{x}(k) \\
& +(B+\Delta B) K P \boldsymbol{\xi}(k) \\
\boldsymbol{\xi}(k+2)= & \boldsymbol{z}(k+2)-T \boldsymbol{x}(k+2) \\
= & \{-T \Delta A-T \Delta B K\} \boldsymbol{x}(k) \\
& +(D-T \Delta B K P) \boldsymbol{\xi}(k)
\end{aligned}
$$

Thus, the closed-loop system is expressed as

$$
\begin{equation*}
\boldsymbol{w}(k+2)=G \boldsymbol{w}(k) \tag{22}
\end{equation*}
$$

where

$$
\begin{align*}
\boldsymbol{w}(k) & :=\left[\begin{array}{l}
\boldsymbol{x}(k) \\
\boldsymbol{\xi}(k)
\end{array}\right] \tag{23}\\
G & :=\left[\begin{array}{l}
G_{11} G_{12} \\
G_{21} G_{22}
\end{array}\right] \tag{24}
\end{align*}
$$

where

$$
\begin{aligned}
G_{11} & :=(A+\Delta A)+(B+\Delta B) K \\
G_{12} & :=(B+\Delta B) K P \\
G_{21} & :=-T \Delta A-T \Delta B K \\
G_{22} & :=D-T \Delta B K P
\end{aligned}
$$

Define a candidate of a Lyapunov function as

$$
\begin{align*}
V(k) & =\boldsymbol{x}^{T}(k) S_{1} \boldsymbol{x}(k)+\boldsymbol{\xi}^{T}(k) S_{2} \boldsymbol{\xi}(k) \\
& =\boldsymbol{w}^{T}(k) S \boldsymbol{w}(k) \tag{25}
\end{align*}
$$

where

$$
\begin{equation*}
S=\operatorname{block-diag}\left(S_{1}, S_{2}\right) \tag{26}
\end{equation*}
$$

and $S_{1}=S_{1}^{T}>0, S_{2}=S_{2}^{T}>0$, then the forward difference of $V(k)$ is obtained as

$$
\begin{align*}
\Delta V(k) & =V(k+2)-V(k) \\
& =\boldsymbol{w}^{T}(k)\left(G^{T} S G-S\right) \boldsymbol{w}(k) \tag{27}
\end{align*}
$$

In addition, since it holds that

$$
\begin{equation*}
\boldsymbol{x}^{T}(k) Q \boldsymbol{x}(k)+\boldsymbol{v}^{T}(k) R \boldsymbol{v}(k)=\boldsymbol{w}^{T}(k) \Phi \boldsymbol{w}(k) \tag{28}
\end{equation*}
$$

where

$$
\Phi=\left[\begin{array}{cc}
Q+K^{T} R K & K^{T} R K P \tag{29}\\
* & P^{T} K^{T} R K P
\end{array}\right]
$$

(25) and (27) lead to

$$
\begin{align*}
\Delta V(k)= & \boldsymbol{w}^{T}(k)\left(G^{T} S G-S\right) \boldsymbol{w}(k) \\
= & \boldsymbol{w}^{T}(k) \Omega \boldsymbol{w}(k) \\
& -\left(\boldsymbol{x}^{T}(k) Q \boldsymbol{x}(k)+\boldsymbol{v}^{T}(k) R \boldsymbol{v}(k)\right) \tag{30}
\end{align*}
$$

where

$$
\begin{equation*}
\Omega=G^{T} S G-S+\Phi \tag{31}
\end{equation*}
$$

If Ω satisfies

$$
\begin{equation*}
\Omega<0 \tag{32}
\end{equation*}
$$

(30) yields

$$
\begin{aligned}
\Delta V(k)<-\left(\boldsymbol{x}^{T}(k) Q \boldsymbol{x}(k)+\boldsymbol{v}^{T}(k) R \boldsymbol{v}(k)\right) & <0 \\
\forall \boldsymbol{w}(k) & \neq \mathbf{0}
\end{aligned}
$$

and the closed-loop system is asymptotically stable.
We can decompose (29) as

$$
\Phi=\left[\begin{array}{ll}
Q & 0 \tag{34}\\
0 & 0
\end{array}\right]+\left[\begin{array}{c}
K^{T} \\
P^{T} K^{T}
\end{array}\right] R\left[\begin{array}{ll}
K & K P
\end{array}\right]
$$

Thus, substituting (31) and (34) into (32) we know that the stability condition for this problem is expressed as

$$
\begin{align*}
\Omega= & G^{T} S G-S \\
& +\left[\begin{array}{ll}
Q & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{c}
K^{T} \\
P^{T} K^{T}
\end{array}\right] R[K K P]<0 \tag{35}
\end{align*}
$$

Then \square substituting (24), (26), (3) and (4) into (35), and applying Schur Complement, we obtain the following condition.
$M:=\left[\begin{array}{ccccc}-S_{1}+Q & 0 & M_{13} & M_{14} & K^{T} \\ & -S_{2} & M_{23} & M_{24} & P^{T} K^{T} \\ & & -S_{1}^{-1} & 0 & 0 \\ & & & & -S_{2}^{-1} \\ * & & & & 0 \\ & & & & \\ & & -R^{-1}\end{array}\right]<0$
where

$$
\begin{aligned}
M_{13}= & A^{T}+K^{T} B^{T}+\Delta A_{0}^{T} A_{0}^{T}+A_{0}^{T} \Delta A_{0}^{T} \\
& +\left(\Delta A_{0}^{T}\right)^{2}+K_{1}^{T} \Delta B_{0}^{T}+K_{2}^{T} \Delta B_{0}^{T} A_{0}^{T} \\
& +K_{2}^{T} B_{0}^{T} \Delta A_{0}^{T}+K_{2}^{T} \Delta B_{0}^{T} \Delta A_{0}^{T} \\
M_{14}= & -\Delta A_{0}^{T} A_{0}^{T} T^{T}-A_{0}^{T} \Delta A_{0}^{T} T^{T} \\
& -\left(\Delta A_{0}^{T}\right)^{2} T^{T}-K_{1}^{T} \Delta B_{0}^{T} T^{T} \\
& -K_{2}^{T} \Delta B_{0}^{T} A_{0}^{T} T^{T}-K_{2}^{T} B_{0}^{T} \Delta A_{0}^{T} T^{T} \\
& -K_{2}^{T} \Delta B_{0}^{T} \Delta A_{0}^{T} T^{T} \\
M_{23}= & P^{T} K^{T} B^{T}+P^{T} K_{1}^{T} \Delta B_{0}^{T} \\
& +P^{T} K_{2}^{T} \Delta B_{0}^{T} A_{0}^{T}+P^{T} K_{2}^{T} B_{0}^{T} \Delta A_{0}^{T} \\
& +P^{T} K_{2}^{T} \Delta B_{0}^{T} \Delta A_{0}^{T} \\
M_{24}= & D^{T}-P^{T} K_{1}^{T} \Delta B_{0}^{T} T^{T} \\
& -P^{T} K_{2}^{T} \Delta B_{0}^{T} A_{0}^{T} T^{T} \\
& -P^{T} K_{2}^{T} B_{0}^{T} \Delta A_{0}^{T} T^{T} \\
& -P^{T} K_{2}^{T} \Delta B_{0}^{T} \Delta A_{0}^{T} T^{T}
\end{aligned}
$$

Moreover \square consider a quadratic form $\overline{\boldsymbol{x}}^{T} M \overline{\boldsymbol{x}}$ where $\overline{\boldsymbol{x}}=$ $\left[\boldsymbol{x}_{1}^{T}, \boldsymbol{x}_{2}^{T}, \boldsymbol{x}_{3}^{T}, \boldsymbol{x}_{4}^{T}, \boldsymbol{x}_{5}^{T}\right]^{T}$, and $\boldsymbol{x}_{\mathbf{1}} \in R^{n}, \boldsymbol{x}_{\mathbf{2}} \in R^{n-m}$, $\boldsymbol{x}_{\mathbf{3}} \in R^{n}, \boldsymbol{x}_{\mathbf{4}} \in R^{n}$ and $\boldsymbol{x}_{\mathbf{5}} \in R^{r}$ are arbitrary nonzero vectors.

Then applying Lemma 1 to the above quadratic form, it holds for any $\epsilon_{1}>0$ that

$$
\begin{align*}
& 2 \boldsymbol{x}_{\mathbf{1}}{ }^{T} \Delta A_{0}^{T} A_{0}^{T} \boldsymbol{x}_{\mathbf{3}} \\
& \leq \epsilon_{1} \boldsymbol{x}_{\mathbf{3}}^{T} A_{0} D_{A} D_{A}^{T} A_{0}^{T} \boldsymbol{x}_{\mathbf{3}}+\epsilon_{1}^{-1} \boldsymbol{x}_{\mathbf{1}}^{T} E_{A}^{T} E_{A} \boldsymbol{x}_{\mathbf{1}} \tag{37a}
\end{align*}
$$

Similar inequality results are obtained for $\epsilon_{2}>0, \cdots$, $\epsilon_{6}>0, \delta_{1}>0, \cdots, \delta_{16}>0$. Then, a sufficient matrix inequality condition of (36) is derived. Moreover, applying Schur Complement and Lemma 1 leads to (13), (14) and (15). Refer to [15] for details of derivation of (13), (14) and (15).

Further \square summing (33) from 0 to \bar{N} yields

$$
\begin{align*}
& \boldsymbol{x}^{T}(\bar{N}+1) S_{1} \boldsymbol{x}(\bar{N}+1)+\boldsymbol{\xi}^{T}(\bar{N}+1) S_{2} \boldsymbol{\xi}(\bar{N}+1) \\
& -\left(\boldsymbol{x}^{T}(0) S_{1} \boldsymbol{x}(0)+\boldsymbol{\xi}^{T}(0) S_{2} \boldsymbol{\xi}(0)\right) \\
< & -\sum_{l=0}^{\bar{N}}\left(\boldsymbol{x}^{T}(N l) Q \boldsymbol{x}(N l)+\boldsymbol{v}^{T}(N l) R \boldsymbol{v}(N l)\right)<0 \tag{38}
\end{align*}
$$

Here, the asymptotic stability of the closed-loop system implies that

$$
\begin{equation*}
\boldsymbol{x}^{T}(\bar{N}+1) S_{1} \boldsymbol{x}(\bar{N}+1) \rightarrow 0, \boldsymbol{\xi}^{T}(\bar{N}+1) S_{1} \boldsymbol{\xi}(\bar{N}+1) \rightarrow 0 \tag{39}
\end{equation*}
$$

as \bar{N} tends to the infinity. Hence, it is obtained that

$$
\begin{aligned}
J & =\sum_{l=0}^{\infty}\left(\boldsymbol{x}^{T}(N l) Q \boldsymbol{x}(N l)+\boldsymbol{v}^{T}(N l) R \boldsymbol{v}(N l)\right) \\
& <\boldsymbol{x}^{T}(0) S_{1} \boldsymbol{x}(0)+\boldsymbol{\xi}^{T}(0) S_{2} \boldsymbol{\xi}(0)
\end{aligned}
$$

$$
\begin{equation*}
=J^{*} \tag{40}
\end{equation*}
$$

where J^{*} denotes the guaranteed cost. Here, we consider the optimal expected value of the guaranteed cost. It is calculated as

$$
\begin{align*}
E\left[J^{*}\right] & =E\left[\boldsymbol{x}^{T}(0) S_{1} \boldsymbol{x}(0)+\boldsymbol{\xi}^{T}(0) S_{2} \boldsymbol{\xi}(0)\right] \\
& =\operatorname{tr} S_{1} E\left[\boldsymbol{x}(0) \boldsymbol{x}^{T}(0)\right]+\operatorname{tr} S_{2} E\left[\boldsymbol{\xi}(0) \boldsymbol{\xi}^{T}(0)\right] \tag{41}
\end{align*}
$$

A relation between mean and covarience of $\boldsymbol{x}(0)$ is given by

$$
\begin{equation*}
\Sigma_{0}=E\left[\boldsymbol{x}(0) \boldsymbol{x}^{T}(0)\right]-\boldsymbol{m}_{0} \boldsymbol{m}_{0}^{T} \tag{42}
\end{equation*}
$$

Substituting (42) into (41) yields

$$
\begin{align*}
E\left[J^{*}\right]= & \operatorname{tr} S_{1}\left(\Sigma_{0}+\boldsymbol{m}_{0} \boldsymbol{m}_{0}^{T}\right) \\
& +\operatorname{tr} S_{2} E\left[(\boldsymbol{z}(0)-T \boldsymbol{x}(0))(\boldsymbol{z}(0)-T \boldsymbol{x}(0))^{T}\right] \tag{43}
\end{align*}
$$

Here, it is readily seen that

$$
\begin{align*}
& E\left[(\boldsymbol{z}(0)-T \boldsymbol{x}(0))(\boldsymbol{z}(0)-T \boldsymbol{x}(0))^{T}\right] \\
= & T \Sigma_{0} T^{T}+\left(\boldsymbol{z}(0)-T \boldsymbol{m}_{0}\right)\left(\boldsymbol{z}(0)-T \boldsymbol{m}_{0}\right)^{T} \tag{44}
\end{align*}
$$

Hence \square (43) leads to

$$
\begin{align*}
E\left[J^{*}\right]= & \operatorname{tr} S_{1}\left(\Sigma_{0}+\boldsymbol{m}_{0} \boldsymbol{m}_{0}^{T}\right)+\operatorname{tr} S_{2}\left(T \Sigma_{0} T^{T}\right. \\
& \left.+\left(\boldsymbol{z}(0)-T \boldsymbol{m}_{0}\right)\left(\boldsymbol{z}(0)-T \boldsymbol{m}_{0}\right)^{T}\right) \tag{45}
\end{align*}
$$

Here, it can be assumed that an initial value $\boldsymbol{z}(0)$ of the minimal order observer satisfies the following equation without loss of generality.

$$
\begin{equation*}
\boldsymbol{z}(0)-T \boldsymbol{m}_{0}=\mathbf{0} \tag{46}
\end{equation*}
$$

Substituting (46) into (45) yields

$$
\begin{equation*}
E\left[J^{*}\right]=\operatorname{tr} S_{1}\left(\Sigma_{0}+\boldsymbol{m}_{0} \boldsymbol{m}_{0}^{T}\right)+\operatorname{tr} S_{2} T \Sigma_{0} T^{T} \tag{47}
\end{equation*}
$$

Here, we consider positive scalars γ_{0}, γ_{1} satisfying the following inequalities.

$$
\begin{align*}
\operatorname{tr} S_{1}\left(\Sigma_{0}+\boldsymbol{m}_{0} \boldsymbol{m}_{0}^{T}\right) & <\gamma_{0} \tag{48}\\
\operatorname{tr} S_{2} T \Sigma_{0} T^{T} & <\gamma_{1} \tag{49}
\end{align*}
$$

Then, minimizing $\gamma_{0}+\gamma_{1}$ results in giving the minimum value min $E\left[J^{*}\right]$. Recalling $\operatorname{tr}(A B)=\operatorname{tr}(B A)$, and using (18) and (19) we obtain

$$
\begin{align*}
& \operatorname{tr} S_{1}\left(\Sigma_{0}+\boldsymbol{m}_{0} \boldsymbol{m}_{0}^{T}\right) \\
& =\operatorname{tr}\left(\Sigma_{0}+\boldsymbol{m}_{0} \boldsymbol{m}_{0}^{T}\right)^{1 / 2 T} S_{1}\left(\Sigma_{0}+\boldsymbol{m}_{0} \boldsymbol{m}_{0}^{T}\right)^{1 / 2} \\
& =\operatorname{tr}\left[\begin{array}{ccccc}
\boldsymbol{v}_{1}^{T} S_{1} \boldsymbol{v}_{1} & & & & * \\
& & \boldsymbol{v}_{2}^{T} S_{1} \boldsymbol{v}_{2} & & \\
& & & \ddots & \\
& & & & \boldsymbol{v}_{n}^{T} S_{1} \boldsymbol{v}_{n}
\end{array}\right] \\
& =\boldsymbol{v}_{1}^{T} S_{1} \boldsymbol{v}_{1}+\boldsymbol{v}_{2}^{T} S_{1} \boldsymbol{v}_{2}+\cdots+\boldsymbol{v}_{n}^{T} S_{1} \boldsymbol{v}_{n} \tag{50}\\
& \operatorname{tr} S_{2} T \Sigma_{0} T^{T} \\
& =\operatorname{tr} \Sigma_{0}^{1 / 2^{T}} T^{T} S_{2} T \Sigma_{0}^{1 / 2}
\end{align*}
$$

$$
\begin{align*}
& =\operatorname{tr}\left[\begin{array}{cccc}
\boldsymbol{w}_{1}^{T} T^{T} S_{2} T \boldsymbol{w}_{1} & & \\
& & \boldsymbol{w}_{2}^{T} T^{T} S_{2} T \boldsymbol{w}_{2} & \\
& & & \\
& & & \\
& & & \boldsymbol{w}_{n}^{T} T^{T} S_{2} T \boldsymbol{w}_{n}
\end{array}\right] \\
& =\boldsymbol{w}_{1}^{T} T^{T} S_{2} T \boldsymbol{w}_{1}+\cdots+\boldsymbol{w}_{n}^{T} T^{T} S_{2} T \boldsymbol{w}_{n} \tag{51}
\end{align*}
$$

Substituing (50) into (48) derives (16) \square Further, combining (51) and (49), and applying Schur Complement leads to (17) \square

It is noted that the inequalities (13)-(17) cannot be solved directly by LMI because they contain the matri$\operatorname{ces} S_{1}^{-1}=S_{1, i n v}, S_{2}^{-1}=S_{2, i n v}, \epsilon_{1}^{-1}=\epsilon_{1, i n v}, \epsilon_{2}^{-1}=$ $\epsilon_{2, i n v}, \delta_{5}^{-1}=\delta_{5, i n v}, \cdots, \delta_{8}^{-1}=\delta_{8, i n v}, \delta_{13}^{-1}=\delta_{13, i n v}$, $\cdots, \delta_{16}^{-1}=\delta_{16, \text { inv }}, \mu_{6}^{-1}=\mu_{6, \text { inv }}$, which satisfy the inverse relations. In addition, the nonlinear terms also appear. Therefore, we apply the cone complementarity linearization approach [12], [13] as well as [11].

4. A NUMERICAL EXAMPLE

Consider a continuous-time system with the following transfer function

$$
G(s)=\frac{1+\beta}{s(s+1+\alpha)}
$$

where α and β are the uncertainties.
We can convert it to the state space form as follows.

$$
\begin{aligned}
& \dot{\boldsymbol{x}}(t)=\left[\begin{array}{cc}
-1-\alpha & 0 \\
1 & 0
\end{array}\right] \boldsymbol{x}(t)+\left[\begin{array}{c}
1+\beta \\
0
\end{array}\right] \boldsymbol{u}(t) \\
& \boldsymbol{y}(t)=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \boldsymbol{x}(t)
\end{aligned}
$$

Then, the discrete-time form is

$$
\begin{aligned}
\boldsymbol{x}(k+1)= & \left\{\left[\begin{array}{cc}
1-T_{s} & 0 \\
T_{s} & 1
\end{array}\right]+\left[\begin{array}{ll}
\Delta a_{1} & 0 \\
\Delta a_{2} & 0
\end{array}\right]\right\} \boldsymbol{x}(k) \\
& +\left\{\left[\begin{array}{c}
T_{s} \\
0
\end{array}\right]+\left[\begin{array}{l}
\Delta b_{1} \\
\Delta b_{2}
\end{array}\right]\right\} \boldsymbol{u}(k) \\
\boldsymbol{y}(k)= & {\left[\begin{array}{ll}
0 & 1
\end{array}\right] \boldsymbol{x}(k) }
\end{aligned}
$$

with $T_{s}=0.1, \Delta a_{1}=0.006, \Delta a_{2}=-0.006, \Delta b_{1}=$ $-0.007, \Delta b_{2}=0.006$.

The following parameters are given

$$
\begin{aligned}
\boldsymbol{m}_{0} & =\left[\begin{array}{l}
0 \\
0
\end{array}\right], \Sigma_{0}=\left[\begin{array}{cc}
0.1 & 0 \\
0 & 0.1
\end{array}\right], \\
R & =0.01, Q=\left[\begin{array}{cc}
0.1 & 0 \\
0 & 0.2
\end{array}\right] .
\end{aligned}
$$

Applying Theorem 1 with initial $\gamma=2$, we obtain a solution

$$
\begin{aligned}
& K=\left[\begin{array}{l}
-0.0320-0.3021 \\
-0.0000-1.5397
\end{array}\right] \\
& L=-0.3817 \\
& E\left[J^{*}\right]=0.3155 \\
& H_{0}=0.0862, H_{1}=0.1000, E=-0.1002 \\
& W=\left[\begin{array}{l}
0.3817 \\
1.0000
\end{array}\right]
\end{aligned}
$$

Figure 1 displays the transition of the guaranteed cost. The mark + shows that a feasible solution cannot be obtained for the guaranteed cost candidate $\bar{\gamma}$ and the optimal performance index is greater than + . Trajectories of states and estimate error are depicted in Figs. 2-3 with $x(0)=\left[\begin{array}{ll}-0.1 & 0.2\end{array}\right]^{T}$. The control input is illustrated in Fig. 4

Fig. 1. Trajectories of the guaranteed cost.

Fig. 2. Trajectories of states $x_{1}(-)$ and $x_{2}(\mathbb{\square})$.

Fig. 3. Trajectory of estimate error ξ.

5. CONCLUSION

This paper discusses a minimal order observer-based guaranteed cost control design for multirate systems. A sufficient condition for the existence of state feedback guaranteed cost controllers is derived on the basis of the LMI feasible solutions.

Fig. 4. Trajectory of input u.

REFERENCES

[1] S. S. L. Chang and T. K. C. Peng, "Adaptive guaranteed cost control of systems with uncertain parameters", IEEE Trans. on Automat. Contr., Vol. 17, No. 4, pp. 474-483, 1972.
[2] I. R. Petersen and D. C. McFarlane, "Optimal guaranteed cost control and filtering for uncertain linear systems", IEEE Trans. on Automat. Contr., Vol. 39, No. 9, pp. 1971-1977, 1994.
[3] I. R. Petersen, "Guaranteed cost LQG control of uncertain linear systems", IEE Proc. Control Theory Appl., Vol. 142, No. 2, pp. 95-102, 1995.
[4] L. Xie and Y. C. Soh, "Guaranteed cost control of uncertain discrete-time systems", Proc. of the 32nd IEEE Conference on Decision and Control, pp. 5661, 1993.
[5] L. Yu, J. C. Wang and J. Chu, "Guaranteed cost control of uncertain linear discrete-time systems", Proc. of the American Control Conference, pp. 3181-3184, 1997.
[6] I. R. Petersen, D. C. McFarlane and M. A. Rotea, "Optimal guaranteed cost control of discrete-time uncertain linear systems", Int. J. Robust Nonlinear Control, Vol. 8, No. 7, pp. 649-657, 1998.
[7] M. Araki and K. Yamamoto, "Multivariable multirate sampled-data systems, state-space description, transfer characteristics and nyquist criterion", IEEE Trans. on Automat. Contr., Vol. 31, No. 2, pp. 145154, 1986.
[8] J. Salt and P. Albertos, "Model-based multirate controllers design", IEEE Trans. on Contr. System Technology, Vol. 13, No. 6, pp. 988-997, 2005.
[9] M. Ishitobi and A. Inoue, "Multirate adaptive control based on a fast-rate model", Proc. of the 4 th International DCDIS Conference., pp. 197-201, 2005.
[10] M. Cimino and P. R. Pagilla, "Design of linear timeinvariant controllers for multirate systems", Automatica, Vol. 46, No. 8, pp. 1315-1319, 2010.
[11] M. Ishitobi, E. Susanto and S. Kunimatsu "Guaranteed cost controller design for multirate systems", Proc. of the SICE Annual Conference 2012, pp. 1603-1608, 2012.
[12] L. E. Ghaoui, F. Oustry and M. AitRami, "A cone complementarity linearization algorithm for static output-feedback and related problems", IEEE Trans. on Automat. Contr., Vol. 42, No. 8, pp. 11711176, 1997.
[13] W. H. Chen, Z. H. Guan and X. Lu, "Delaydependent output feedback guaranteed cost control for uncertain time-delay systems", Automatica, Vol. 40, No. 7, pp. 1263-1268, 2004.
[14] M. S. Mahmoud and M. Zribi, "Guaranteed cost observer-based control of uncertain time-lag systems", Computers and Electrical Engineering, Vol. 29, No. 1, pp. 193-212, 2003.
[15] T. Tamura, "LMI design of a guaranteed cost controller for multirate systems", Master Thesis, Dept. of Mechanical Systems Eng., Kumamoto Univ., Japan (in Japanese).

