
An LMI approach to optimal guaranteed cost control

of multirate sampling systems

Mitsuaki Ishitobi1, Tatsuhiro Tamura1, Erwin Susanto2 and Sadaaki Kunimatsu1

1Department of Mechanical Systems Engineering, Kumamoto University, Kumamoto, Japan

(Tel: +81-96-342-3777; E-mail: mishi@kumamoto-u.ac.jp )
2Department of Electrical Engineering, Telkom Institute of Technology, Bandung, Indonesia

Abstract: This paper considers a design method of a guaranteed cost controller for multirate sampling systems. A

minimal order multirate observer is used to estimate a state vector at the output sampling period. The controller and the

observer are obtained by using a linear matrix inequality technique. A numerical example illustrates the effectiveness of

the proposed method.
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1. INTRODUCTION

Instability and bad performance can occur in a closed-

loop feedback control system with uncertainties. There-

fore, considerable interests have been attracted to studies

of robust controller design in recent decades. Moreover, it

is desirable to design a controller which not only achieves

the stability of the uncertain system but also guarantees

an adequate level of performance. One of the approaches

to solve this problem is a guaranteed cost control method

[1]. Many significant results have been shown for the

continuous-time case [2], [3] and for the single rate sam-

pling discrete-time case [4], [5], [6].

Multirate sampling schemes have long been the focus

of interest by many control designers [7], [8], [9], [10].

This paper considers a design method of a guaranteed

cost controller for multirate systems. The controller is

obtained in the basis of a multirate state-space model and

the state variable is estimated by a minimal order multi-

rate observer. The design problem is expressed by matrix

inequalities and solved by an algorithm of a linear matrix

inequality technique. This paper extends the previous re-

sults [11] to systems with uncertainties in the input term.

2. PROBLEM STATEMENT

Consider a discrete-time uncertain system in the form

x(k + 1) = (A0 +∆A0)x(k) + (B0 +∆B0)u(k)

y(k) =Cx(k) (1)

Assume the output sampling period is greater than that of

the input and only y(iN) is available for i = 0, 1, · · ·
where N is a positive integer greater than one and iN

means the time iNTs where Ts denotes a sampling pe-

riod. Then, the output-based form of (1) can be written

as follows

x(k +N) = (A+∆A)x(k) + (B +∆B)v(k)

y(k) =Cx(k) (2)

where

A=AN
0

∆A= (A0 +∆A0)
N −AN

0
(3)

B = [B0, A0B0, · · · , A
N−1

0
B0]

∆B = [∆B0,

(A0 +∆A0)(B0 +∆B0)−A0B0,

· · · , (A0 +∆A0)
N−1(B0 +∆B0)

−AN−1

0
B0] (4)

v(k) = [uT (k +N − 1),uT (k +N − 2),

· · · ,uT (k)]T

Matrices A0, and B0 are known constant real-valued ma-

trices with appropriate dimensions, and C is restricted to

the form of C = [O Im].

We assume that the parameter uncertainties ∆A0 and

∆B0 satisfy the following relations

∆A0 =DAFAEA, ∆B0 = DBFBEB

(5)

where FA and FB are unknown and deterministic matri-

ces satisfying

FT
AFA ≤ I, FT

BFB ≤ I (6)

and DA, EA are constant real-valued known matrices

with appropriate dimensions.

It is also assumed that the initial state variable x(0)
is unknown, but their mean and covariance are known,

respectively as

E [x(0)] =m0 (7)

E
[

(x(0)−m0)(x(0)−m0)
T
]

=Σ0 > O (8)

where E [·] denotes the expected value operator.

The problem considered here is to design a minimal

order observer

z(k +N) =Dz(k) + Ey(k) +
N−1
∑

i=0

Hiu(k + i) (9)

x̂(k) = Pz(k) +Wy(k) (10)

and a controller

v(k) =Kx̂(k) (11)
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with

K =











KN−1

...

K1

K0











, A =

[

A11 A12

A21 A22

]

, D = A11 + LA21,

Hi = TAN−1−i
0

B0, TA−DT = EC,

T =
[

In−m L
]

, PT +WC = In, P =
[

In−m O
]T

so as to achieve an upper bound on the following

quadratic performance index

E [J ] =

E

[

∑

l=0

{xT (Nl)Qx(Nl) + vT (Nl)Rv(Nl)}

]

(12)

associated with the multirate systems (2), where Q and R

are given symmetric positive-definite matrices.

3. MAIN RESULTS

Attention of this study is restricted to N = 2 for sim-

plicity of description. Extension to the general case of

N ≥ 3 is complicated though the basic idea is the same.

The main result of this study is given by Theorem 1.

Theorem 1. If the following matrix inequalities optimiza-

tion problem; min {γ0 + γ1} subject to













Λ11 0 AT +KTBT 0 KT

Λ22 PTKTBT AT
11

+AT
21
LT PTKT

Λ33 0 0
Λ44 0

∗ −R−1













< 0 (13)

Λ11 =− S1 +Q+ Y1 + Y2 + Y3 + Y4 + Y5

+ Y10 + Y12 + Y14 + Y16

+ (ǫ1,inv + ǫ4,inv + ǫ6,inv)E
T
AEA

+ (ǫ2,inv + ǫ5,inv)A
T
0
ET

AEAA0

Λ22 =− S2 + Y17 + Y18 + Y19 + Y20 + Y22

+ Y24 + Y26 + Y28

Λ33 =− S1,inv + (ǫ2 + ǫ3 + δ3 + δ4 + δ11

+ δ12)DAD
T
A + ǫ1A0DAD

T
AA

T
0

+ (δ1 + δ9)DBD
T
B

+ (δ2 + δ10)A0DBD
T
BA

T
0

Λ44 =− S2,inv + Y6 + Y7 + Y8 + Y9 + Y11

+ Y13 + Y15 + Y21 + Y23 + Y25 + Y27

[

−Y1 + µ6,invE
T
AEA 0

0 −ǫ3I + µ6EADAD
T
AE

T
A

]

≤ 0

[

−Y5 +X1 0
0 −δ4I + µ1EADBE

T
AD

T
B

]

≤ 0

[

−Y8 +X2 0
0 −ǫ6,invI + µ2D

T
AE

T
AEADA

]

≤ 0

[

−Y16 +X3 0
0 −δ8I + µ3EADBE

T
AD

T
B

]

≤ 0

[

−Y20 +X4 0
0 −δ12I + µ4EADBE

T
AD

T
B

]

≤ 0

[

−Y28 +X5 0
0 −δ16I + µ5EADBE

T
AD

T
B

]

≤ 0

[

−Y2 K
T
1
ET

B

∗ −δ1I

]

≤ 0,

[

−Y3 K
T
2
ET

B

∗ −δ2I

]

≤ 0

[

−Y4 K
T
2
BT

0
ET

B

∗ −δ3I

]

≤ 0,

[

−Y6 TA0DA

∗ −ǫ4,invI

]

≤ 0

[

−Y7 TDA

∗ −ǫ5,invI

]

≤ 0,

[

−Y9 TDB

∗ −δ5,invI

]

≤ 0

[

−Y10 K
T
1
ET

B

∗ −δ5I

]

≤ 0,

[

−Y11 TA0DB

∗ −ǫ6,invI

]

≤ 0

[

−Y12 K
T
2
ET

B

∗ −δ6I

]

≤ 0,

[

−Y13 TDA

∗ −δ7,invI

]

≤ 0

[

−Y14 K
T
2
BT

0
ET

A

∗ −δ7I

]

≤ 0,

[

−Y15 TDA

∗ −δ8,invI

]

≤ 0

[

−Y17 P
TET

B

∗ −δ9I

]

≤ 0,

[

−Y18 P
TKT

2
ET

B

∗ −δ10I

]

≤ 0

[

−Y19 P
TKT

2
BT

0
ET

A

∗ −δ11I

]

≤ 0,

[

−Y21 TDB

∗ −δ13,invI

]

≤ 0

[

−Y22 P
TKT

1
ET

B

∗ −δ13I

]

≤ 0,

[

−Y23 TA0DB

∗ −δ14,invI

]

≤ 0

[

−Y24 P
TKT

2
ET

B

∗ −δ14I

]

≤ 0,

[

−Y25 TDA

∗ −δ15,invI

]

≤ 0

[

−Y26 P
TKT

2
BT

0
ET

A

∗ −δ15I

]

≤ 0,

[

−Y27 TDA

∗ −δ16,invI

]

≤ 0

(14)

[

−X1 K
T
2
ET

B

∗ −µ1I

]

≤ 0,

[

−X2 TDA

∗ −µ2I

]

≤ 0

[

−X3 K
T
2
ET

B

∗ −µ3I

]

≤ 0,

[

−X4 P
TKT

2
ET

B

∗ −µ4I

]

≤ 0

[

−X5 P
TKT

2
ET

B

∗ −µ5I

]

≤ 0 (15)

−γ0+vT
1
S1v1+vT

2
S1v2+ · · ·++vT

nS1vn < 0 (16)














−γ1 wT
2
TT wT

2
TT · · · wT

nT
T

∗ −S2,inv

∗ −S2,inv

...
. . .

∗ −S2,inv















< 0 (17)

where

[v1 v2 · · · vn] := (Σ0 +m0m
T
0
)

1

2 (18)

[w1 w2 · · · wn] := Σ
1

2

0
(19)

has a set of solutions S1 > 0, S2 > 0, S1,inv > 0,

S2,inv > 0, K, L, T , X1, · · · , X5, Y1, · · · , Y28, ǫ1 > 0,
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· · · , ǫ3 > 0, ǫ1,inv > 0, ǫ2,inv > 0, ǫ4,inv > 0, · · · ,

ǫ6,inv > 0, δ1 > 0, · · · , δ16 > 0, δ5,inv > 0, · · · ,

δ8,inv > 0, δ13,inv > 0, · · · , δ16,inv > 0, µ1 > 0, · · · ,

µ5 > 0, γ0, γ1, which satisfy the inverse relation such

as S−1

1
= S1,inv, S−1

2
= S2,inv, ǫ−1

1
= ǫ1,inv, ǫ−1

2
=

ǫ2,inv, δ−1

5
= δ5,inv, · · · , δ−1

8
= δ8,inv, δ−1

13
= δ13,inv,

· · · , δ−1

16
= δ16,inv, µ−1

6
= µ6,inv, then the minimal or-

der observer-based control law (9)-(11) is a guaranteed

cost controller which gives the minimum expected value

of the guaranteed cost

E[J∗] = E
[

xT (0)Qx(0) + vT (0)Rv(0))
]

(20)

Remark 1: Since (13)-(17) have a constraint of the in-

verse relations and nonlinear terms, a cone complemen-

tarity linealization algorithm is introduced to solve [12],

[13].

Before giving a proof of Theorem 1, a key lemma is

introduced.

Lemma 1 [14]. Given matrices D and E of appropri-

ate dimensions, and F be a matrix function satisfying

FTF ≤ I , then for any α > 0, the following inequal-

ity holds

DFE + ETFTDT ≤ αDDT + α−1ETE.

Proof of Theorem 1.

From (11) we have

v(k) =Kx̂(k)

=K{Pξ(k) + x(k)} (21)

where ξ(k) = z(k) − Tx(k) is the estimated error of

the minimal order observer. Then, using (21) and (2), we

obtain

x(k + 2) =(A+∆A)x(k) + (B +∆B)v(k)

={(A+∆A) + (B +∆B)K}x(k)

+ (B +∆B)KPξ(k)

ξ(k + 2) =z(k + 2)− Tx(k + 2)

={−T∆A− T∆BK}x(k)

+ (D − T∆BKP )ξ(k)

Thus, the closed-loop system is expressed as

w(k + 2) = Gw(k) (22)

where

w(k) :=

[

x(k)
ξ(k)

]

(23)

G :=

[

G11 G12

G21 G22

]

(24)

where

G11 := (A+∆A) + (B +∆B)K

G12 := (B +∆B)KP

G21 := −T∆A− T∆BK

G22 := D − T∆BKP

Define a candidate of a Lyapunov function as

V (k) = xT (k)S1x(k) + ξT (k)S2ξ(k)

= wT (k)Sw(k) (25)

where

S = block-diag(S1, S2) (26)

and S1 = ST
1

> 0, S2 = ST
2

> 0, then the forward

difference of V (k) is obtained as

∆V (k) =V (k + 2)− V (k)

=wT (k)(GTSG− S)w(k) (27)

In addition, since it holds that

xT (k)Qx(k) + vT (k)Rv(k) = wT (k)Φw(k) (28)

where

Φ =

[

Q+KTRK KTRKP

∗ PTKTRKP

]

(29)

(25) and (27) lead to

∆V (k) =wT (k)(GTSG− S)w(k)

=wT (k)Ωw(k)

− (xT (k)Qx(k) + vT (k)Rv(k)) (30)

where

Ω = GTSG− S +Φ (31)

If Ω satisfies

Ω < 0 (32)

(30) yields

∆V (k) < −(xT (k)Qx(k) + vT (k)Rv(k)) < 0
∀w(k) 6= 0 (33)

and the closed-loop system is asymptotically stable.

We can decompose (29) as

Φ =

[

Q 0
0 0

]

+

[

KT

PTKT

]

R
[

K KP
]

(34)

Thus, substituting (31) and (34) into (32) we know that

the stability condition for this problem is expressed as

Ω = GTSG− S

+

[

Q 0
0 0

]

+

[

KT

PTKT

]

R
[

K KP
]

< 0 (35)

Then| substituting (24), (26), (3) and (4) into (35), and

applying Schur Complement, we obtain the following

condition.

M :=













−S1 +Q 0 M13 M14 KT

−S2 M23 M24 PTKT

−S−1

1
0 0

−S−1

2
0

∗ −R−1













< 0 (36)
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where

M13 =AT +KTBT +∆AT
0
AT

0
+AT

0
∆AT

0

+ (∆AT
0
)2 +KT

1
∆BT

0
+KT

2
∆BT

0
AT

0

+KT
2
BT

0
∆AT

0
+KT

2
∆BT

0
∆AT

0

M14 =−∆AT
0
AT

0
TT −AT

0
∆AT

0
TT

− (∆AT
0
)2TT −KT

1
∆BT

0
TT

−KT
2
∆BT

0
AT

0
TT −KT

2
BT

0
∆AT

0
TT

−KT
2
∆BT

0
∆AT

0
TT

M23 =PTKTBT + PTKT
1
∆BT

0

+ PTKT
2
∆BT

0
AT

0
+ PTKT

2
BT

0
∆AT

0

+ PTKT
2
∆BT

0
∆AT

0

M24 =DT − PTKT
1
∆BT

0
TT

− PTKT
2
∆BT

0
AT

0
TT

− PTKT
2
BT

0
∆AT

0
TT

− PTKT
2
∆BT

0
∆AT

0
TT

Moreover|consider a quadratic form x̄TM x̄ where x̄ =
[xT

1
,xT

2
,xT

3
,xT

4
,xT

5
]T , and x1 ∈ Rn, x2 ∈ Rn−m,

x3 ∈ Rn, x4 ∈ Rn and x5 ∈ Rr are arbitrary nonzero

vectors.

Then applying Lemma 1 to the above quadratic form,

it holds for any ǫ1 > 0 that

2x1
T∆AT

0
AT

0
x3

≤ ǫ1x3
TA0DAD

T
AA

T
0
x3 + ǫ−1

1
x1

TET
AEAx1

(37a)

Similar inequality results are obtained for ǫ2 > 0, · · · ,

ǫ6 > 0, δ1 > 0, · · · , δ16 > 0. Then, a sufficient matrix

inequality condition of (36) is derived. Moreover, apply-

ing Schur Complement and Lemma 1 leads to (13), (14)

and (15). Refer to [15] for details of derivation of (13),

(14) and (15).

Further| summing (33) from 0 to N̄ yields

xT (N̄ + 1)S1x(N̄ + 1) + ξT (N̄ + 1)S2ξ(N̄ + 1)

−(xT (0)S1x(0) + ξT (0)S2ξ(0))

<−
N̄
∑

l=0

(xT (Nl)Qx(Nl) + vT (Nl)Rv(Nl)) < 0

(38)

Here, the asymptotic stability of the closed-loop system

implies that

xT (N̄+1)S1x(N̄+1) → 0, ξT (N̄+1)S1ξ(N̄+1) → 0

(39)

as N̄ tends to the infinity. Hence, it is obtained that

J =
∞
∑

l=0

(xT (Nl)Qx(Nl) + vT (Nl)Rv(Nl))

< xT (0)S1x(0) + ξT (0)S2ξ(0)

= J∗ (40)

where J∗ denotes the guaranteed cost. Here, we consider

the optimal expected value of the guaranteed cost. It is

calculated as

E [J∗] =E
[

xT (0)S1x(0) + ξT (0)S2ξ(0)
]

= trS1E
[

x(0)xT (0)
]

+ trS2E
[

ξ(0)ξT (0)
]

(41)

A relation between mean and covarience of x(0) is given

by

Σ0 = E
[

x(0)xT (0)
]

−m0m
T
0

(42)

Substituting (42) into (41) yields

E [J∗] = trS1(Σ0 +m0m
T
0
)

+trS2E
[

(z(0)− Tx(0))(z(0)− Tx(0))T
]

(43)

Here, it is readily seen that

E
[

(z(0)− Tx(0))(z(0)− Tx(0))T
]

= TΣ0T
T + (z(0)− Tm0)(z(0)− Tm0)

T (44)

Hence| (43) leads to

E [J∗] = trS1(Σ0 +m0m
T
0
) + trS2(TΣ0T

T

+(z(0)− Tm0)(z(0)− Tm0)
T ) (45)

Here, it can be assumed that an initial value z(0) of the

minimal order observer satisfies the following equation

without loss of generality.

z(0)− Tm0 = 0 (46)

Substituting (46) into (45) yields

E [J∗] = trS1(Σ0 +m0m
T
0
) + trS2TΣ0T

T (47)

Here, we consider positive scalars γ0, γ1 satisfying the

following inequalities.

trS1(Σ0 +m0m
T
0
)< γ0 (48)

trS2TΣ0T
T < γ1 (49)

Then, minimizing γ0 + γ1 results in giving the minimum

value min E [J∗]. Recalling tr(AB) = tr(BA), and using

(18) and (19) we obtain

trS1(Σ0 +m0m
T
0
)

= tr(Σ0 +m0m
T
0
)1/2TS1(Σ0 +m0m

T
0
)1/2

= tr











vT
1
S1v1 ∗

vT
2
S1v2

. . .

∗ vT
nS1vn











= vT
1
S1v1 + vT

2
S1v2 + · · ·+ vT

nS1vn (50)

trS2TΣ0T
T

= trΣ
1/2
0

T
TTS2TΣ

1/2
0
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= tr











wT
1
TTS2Tw1 ∗

wT
2
TTS2Tw2

. . .

∗ wT
nT

TS2Twn











=wT
1
TTS2Tw1 + · · ·+wT

nT
TS2Twn (51)

Substituing (50) into (48) derives (16)} Further, combin-

ing (51) and (49), and applying Schur Complement leads

to (17)} ✷

It is noted that the inequalities (13)-(17) cannot be

solved directly by LMI because they contain the matri-

ces S−1

1
= S1,inv, S−1

2
= S2,inv, ǫ−1

1
= ǫ1,inv , ǫ−1

2
=

ǫ2,inv, δ−1

5
= δ5,inv, · · · , δ−1

8
= δ8,inv, δ−1

13
= δ13,inv,

· · · , δ−1

16
= δ16,inv, µ−1

6
= µ6,inv, which satisfy the

inverse relations. In addition, the nonlinear terms also

appear. Therefore, we apply the cone complementarity

linearization approach [12], [13] as well as [11].

4. A NUMERICAL EXAMPLE

Consider a continuous-time system with the following

transfer function

G(s) =
1 + β

s(s+ 1 + α)

where α and β are the uncertainties.

We can convert it to the state space form as follows.

ẋ(t) =

[

−1− α 0
1 0

]

x(t) +

[

1 + β

0

]

u(t)

y(t) =
[

0 1
]

x(t)

Then, the discrete-time form is

x(k + 1) =

{[

1− Ts 0
Ts 1

]

+

[

∆a1 0
∆a2 0

]}

x(k)

+

{[

Ts

0

]

+

[

∆b1
∆b2

]}

u(k)

y(k) =
[

0 1
]

x(k)

with Ts = 0.1, ∆a1 = 0.006, ∆a2 = −0.006, ∆b1 =
−0.007, ∆b2 = 0.006.

The following parameters are given

m0 =

[

0
0

]

, Σ0 =

[

0.1 0
0 0.1

]

,

R= 0.01, Q =

[

0.1 0
0 0.2

]

.

Applying Theorem 1 with initial γ=2, we obtain a so-

lution

K =

[

−0.0320−0.3021
−0.0000−1.5397

]

L = −0.3817

E [J∗] = 0.3155

H0 = 0.0862, H1 = 0.1000, E = −0.1002

W =

[

0.3817
1.0000

]

Figure 1 displays the transition of the guaranteed cost.

The mark + shows that a feasible solution cannot be ob-

tained for the guaranteed cost candidate γ̄ and the opti-

mal performance index is greater than +. Trajectories of

states and estimate error are depicted in Figs. 2-3 with

x(0) = [−0.1 0.2]T . The control input is illustrated in

Fig. 4

5 10 15

Iterations

0.5

1

1.5

2

G
u
ar

an
te

ed
 
co

st

Fig. 1. Trajectories of the guaranteed cost.

0 5 10

Time [s]

–0.1

0

0.1

0.2

S
ta

te
s

Fig. 2. Trajectories of states x1 (–) and x2 (�� ).

0 5 10

Time [s]

0

0.05

0.1

0.15

E
st

im
at

e 
er

ro
r

Fig. 3. Trajectory of estimate error ξ.

5. CONCLUSION

This paper discusses a minimal order observer-based

guaranteed cost control design for multirate systems. A

sufficient condition for the existence of state feedback

guaranteed cost controllers is derived on the basis of the

LMI feasible solutions.
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0 5 10

Time [s]

–0.2

0

In
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u
t

Fig. 4. Trajectory of input u.
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