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This paper considersa design scheme of a minimal-order observer-based guaranteed cost controller for
linear uncertain time-varying delay systems. A sufficient condition for asymptotic stabilization is guar-
anteed via linear matrix inequality feasible solutions. Optimization is provided by minimizing an upper
bound of the guaranteed cost function. To show the advantage of a minimal-order observer-based guar-
anteed cost control approach, a full-order observer-based case is presented as comparison. A numerical
example is given to illustrate the proposed method.
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1. Introduction

It is well known that in many practical control systems, the system model often contains uncertainties
and perturbations (Lien, 2005). The presence of the uncertainties and time delay may cause instability
and bad performance on a controlled system. Therefore, much effort has been strived to the robust
stability and stabilization of the feedback control system with time delay. Especially for the control of
the real plant, it is desirable to design a controller which not only achieves the stability of the uncertain
system but also guarantees an adequate level of performance (Yu & Chu, 1999). One of the approaches to
solve this problem is the guaranteed cost control method (Chang & Peng, 1972) which has an advantage
in providing an upper bound on the quadratic cost function of the closed-loop system. This upper bound
guarantees that the decrease of the system performance due to uncertainties will not exceed the bound.

Many studies have been reported with significant results based on the guaranteed cost control for
uncertain systems via linear matrix inequalities (LMIs), see, e.g.Mahmoud(2001). Although Riccati
equation can solve this kind of problems, it needs some additional requirements and limitations to solve
specific problems (Yu & Chu,1999). Furthermore,Boydet al. (1994) showed that many complex prob-
lems in system and control theory can be simplified by LMIs form.

In many cases, full states of the system cannot be measured directly because of some reasons such
as poor plant knowledge, costing problems, availability, etc. Hence, an observer-based control may
be more suitable than a state feedback control in such situation.Mahmoud & Zribi (2003) developed
guaranteed cost observer-based controllers for uncertain time-lag systems via solutions of LMIs, though
the cost function is not optimized. Recently,Yu & Lien (2007) considered delay-dependent guaranteed
cost observer-based control problems for uncertain neutral systems with time-varying delay. However,
the convex optimization problem contains the equality constraint. More recently,Ishitobi & Miyachi
(2008) investigated an observer-based guaranteed cost control for uncertain systems, but the obtained
observer gain is extremely large and some poles are located far in the left half-plane.
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Nevertheless, all the previous results considered a full-order observer-based guaranteed cost con-
troller. To the best of our knowledge, no results on the observer-based guaranteed cost control with a
minimal-order observer are available in the past. This motivates us to concern a problem on minimal-
order observer-based guaranteed cost control. In some full-order observer-based cases, the restrictions
on the observer gain are imposed to solve the problem, see, e.g.Mahmoud & Zribi(2003) andIshitobi
& Miyachi (2008). Moreover, an equality constraint and a conservative constraint of time derivative of
the time-varying delay appear inYu & Lien (2007). In our minimal-order observer-based case, opti-
mizing the observer gain leads to obtain less conservative result. Otherwise, a full-order observer-based
case yields an extremely large observer gain because it applies no restriction and optimization on the
observer gain.

The contribution of this paper is to show a design method of a minimal-order observer-based guar-
anteed cost controller for uncertain systems with time-varying delay via an LMI technique. As com-
parison, a full-order observer-based controller design is also presented and it is shown by an example
that it yields an extremely large observer gain. On the minimal-order observer design, no restriction is
imposed to the observer gain. Optimizing an upper bound of the guaranteed cost is considered and an
iterative algorithm is employed to solve the inverse relations. This proposed algorithm utilizes an arbi-
trary increment. It leads to the faster computation than the algorithm ofChenet al. (2004) that applied
the decreasing of an initial value to some extent. Similar to that of a full-order observer-based case, it is
possible to relax the time derivative of time-varying delay in a minimal-order observer-based problem.
It means that a design of a minimal-order observer-based guaranteed cost controller is possible for both
a fast and a slow time-varying delay, see, e.g.Heet al. (2007).

Outline of this paper is as follows. Section 2 states the problem of a continuous uncertain time-
varying delay system. Section 3 provides the main results in LMIs, involving a minimal-order observer-
based controller design algorithm. Section 4 presents relaxing of time derivative of the time-varying
delay. The obtained result is relevant to delay-dependent stabilization. Section 5 shows a full-order
observer-based guaranteed cost control problem. Section 6 gives a numerical example to verify the
proposed method, and Section 7 concludes this work.

2. Problem statement

Consider a continuous uncertain time-varying delay system of the form

ẋ(t)= (A +ΔA(t))x(t)+ (Ad +ΔAd(t))x(t − h(t))+ (B +ΔB(t))u(t), (2.1)

y(t)= Cx(t), (2.2)

x(t)=ψ(t), t ∈ [−h, 0], (2.3)

where 06 h(t) 6 h, ḣ(t) 6 d < 1, h is the constant time delay factor in the states and assumed to be
known,d is a given value,x(t) ∈ <n is the state vector,u(t) ∈ <r is the control input vector,y(t) ∈ <m

is the measured output vector,x(t) = ψ(t) is a given continuous vector-valued initial function, matrices
A, Ad andB are known constant real-valued matrices with appropriate dimensions andC is restricted
to the form ofC = [O Im]. MatricesΔA(t), ΔAd(t) andΔB(t) denote real-valued matrix functions
representing parameter uncertainties.

REMARK 2.1 Time derivative of the time-varying delaẏh(t) should be less than one, thus it has a
conservative constraint. Taking the advantage ofHeet al.(2007) by using some free-weighting matrices,
relaxing ḣ(t) can be done such that it can be applied for both a fast and a slow time-varying delay
problems.
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It is assumedthat the initial state variablex(0) is unknown, but their mean and covariance are known,
respectively, as

E[x(0)] = m0, (2.4)

E[(x(0)− m0)(x(0)− m0)
>] =Σ0 > O, (2.5)

whereE[∙] denotes theexpected value operator.
The problem considered here is to design a minimal-order observer

ż(t)= Dz(t)+ Emy(t)+ Fu(t), (2.6)

x̂(t)= Pz(t)+ Wy(t) (2.7)

and a feedback controller

u(t)= K x̂(t) (2.8)

with

D = A11 + L A21, PT + WC = In, F = T B,

T A− DT = EmC, A =
[

A11 A12

A21 A22

]
, P = [ In−m 0]>, T = [ In−m L ],

whereD,Em,F,W, A11, A12, A21, A22 andL are (n − m) × (n − m), (n − m) × m, (n − m) × r, n ×
m, (n− m)× (n − m), (n− m)× m,m× (n − m),m× mand (n− m)× mmatrices, respectively, so as
to achieve an upper bound on the following quadratic performance index:

E[ J] = E

[∫ ∞

0
(x>(t)Qx(t)+ u>(t)Ru(t))dt

]
(2.9)

associatedwith the uncertain time delay system (2.1–2.3), whereQ and R are given symmetric
positive-definite matrices such that the closed-loop system is asymptotically stable for any time-varying
delayh(t).

In the sequel, the following assumptions and facts are needed.

ASSUMPTIONS 2.1 The parameteruncertaintiesΔA(t), ΔAd(t) and ΔB(t) satisfy the following
relations:

ΔA(t) = DAFA(t)EA, ΔAd(t) = DAdFAd(t)EAd, ΔB(t) = DB FB(t)EB, (2.10)

whereFA(t), FAd(t) andFB(t) are unknowntime-varying and deterministic matrices satisfying

F>
A (t)FA(t) 6 I , F>

Ad(t)FAd(t) 6 I , F>
B (t)FB(t) 6 I , (2.11)

DA, DAd, DB, EA, EAd andEB are constant real-valued known matrices with appropriate dimensions.

.

ASSUMPTIONS 2.2 For t ∈ [−h, 0], the following relation holds:

z(t)− T m(t) = 0. (2.12)
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FACT 2.1 (Schur complements,Mahmoud, 2001). Given constant matricesΩ1, Ω2 andΩ3, where
Ω1 = Ω>

1 and 0< Ω2 = Ω>
2 , thenΩ1 +Ω>

3 Ω
−1
2 Ω3 < 0 if andonly if

[
Ω1 Ω>

3
Ω3 −Ω2

]
< 0 or

[
−Ω2 Ω3

Ω>
3 Ω1

]
< 0.

FACT 2.2 (Lien, 2005). Given any real matricesD and E with appropriate dimensions, andF(t) be
a matrix function satisfyingF(t)>F(t) 6 I , then forany positive scalarα, the following inequality
holds:

DF(t)E + E>F(t)>D> 6 αDD> + α−1E>E.

3. Main results

In this section, a sufficient condition is established for the existence of a minimal-order observer-based
guaranteed cost controller for the uncertain time-varying delay system (2.1–2.3). The main result of this
study is given by Theorem3.1. Here, the feedback gain is restricted to the form

K = −R−1B>S1, (3.1)

whereS1 is a symmetricpositive-definite matrix.

THEOREM 3.1 Under Assumption2.1, if the following matrix inequalities optimization problem:
min{γ0 + γ1 + γ2 + γ3 + γ4 + tr(M1)+ tr(M2)} subject to
























Λ0 X> X> G>
7 Ad 0 0 0 0 0 0 0

X −Mx 0 0 0 0 0 0 0 0 0 0

X 0 −Q−1 0 0 0 0 0 0 0 0 0

G7 0 0 −(ζ + ω)I 0 0 0 0 0 0 0 0

A>
d 0 0 0 Λ1 G>

6 0 0 0 0 0 0

0 0 0 0 G6 Λ2 G>
1 G>

2 G>
3 G>

4 G>
5 0

0 0 0 0 0 G1 −R 0 0 0 0 0

0 0 0 0 0 G2 0 −ω̄ I 0 0 0 0

0 0 0 0 0 G3 0 0 −(β̄ + μ̄+ τ̄ )I 0 0 0

0 0 0 0 0 G4 0 0 0 −(δ + μ+ τ)I 0 0

0 0 0 0 0 G5 0 0 0 0 −λ̄I 0

0 0 0 0 0 0 0 0 0 0 0 Λ3
























<0, (3.2)

n∑

k=1

e>
nkΘ0enk < γ0,

m∑

k=1

e>
mkΘ1emk < γ1,

m∑

k=1

e>
mkΘ2emk < γ2,

m∑

k=1

e>
mkΘ3emk < γ3, (3.3)
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−γ4 v>
1 Y> v>

2 Y> ∙ ∙ ∙ v>
mY>

Yv1 −S2
...

Yv2
. . .

...
...

. . .
...

Yvm ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ −S2












< 0, (3.4)

[
−M1 Ex

E>
x −S−1

3

]
< 0, (3.5)

[
−M2 Fx

F>
x −S−1

4

]
< 0, (3.6)

where

Λ0 = AX + X A> − B R−1B> + ζDAD>
A + (ε + δ)DB D>

B

+ (ε̄ + β̄)B R−1E>
B EB R−1B> + θDAdD>

Ad,

Λ1 = −(1 − d)S3 + (θ̄ + μ̄)EAdE>
Ad, Λ2 = S2A11 + A>

11S2 + Y A21 + A>
21Y

> + S4,

Λ3 = −(1 − d)S4,

Y = S2L , Z = [S2Y],

G1 = P>S1B, G2 = D>
A Z>, G3 = D>

B Z>, G4 = EB R−1B>S1P,

G5 = D>
AdZ>, G6 = −Z Ad, G7 = EAX,

Ex = hIn, Fx = hIn−m, Θ0 =
1

2
(S1(Σ0 + m0m>

0 )+ (Σ0 + m0m>
0 )

>S1),

Θ1 =
1

2
(S2Σ11 +Σ11S2),

Θ2 =
1

2
(YΣ21 +Σ>

21Y
>), Θ3 =

1

2
(Y>Σ12 +Σ>

12Y), Σ
1/2
22 = [v1, v2, . . . , vm],

Σ0 =
[
Σ11 Σ12
Σ21 Σ22

]
, eik = [ 0>

k−1 1 0>
i −k ]>,

whereΣ0, Σ11, Σ12, Σ21 andΣ22 aren × n, (n− m) × (n − m), (n− m) × m, m × (n − m) andm×
m matrices, respectively, has a set of solutionsS1 > 0, S2 > 0, S3 > 0, S4 > 0, Mx > 0, X > 0,
Y, Z, ζ > 0, ε > 0, ε̄ > 0, θ > 0, θ̄ > 0, β̄ > 0, δ > 0, ω > 0, ω̄ > 0, λ̄ > 0, μ > 0, μ̄ > 0,
τ > 0, τ̄ > 0, γ0, γ1, γ2, γ3 andγ4 which satisfy therelationε−1 = ε̄, θ−1 = θ̄ , ω−1 = ω̄, μ−1 = μ̄,
τ−1 = τ̄ , S−1

1 = X andS−1
3 = Mx, then theminimal-order observer-based control law (2.6–2.8) with

K = −R−1B>S1 and L = S−1
2 Y is a guaranteedcost controller which gives the minimum expected

value of the guaranteed cost

E[ J∗] = E

[

w>(0)

[
S1 0
0 S2

]
w(0)+

∫ 0

−h(0)
w>(s)

[
S3 0
0 S4

]
w(s)ds

]

= min {γ0 + γ1 + γ2 + γ3 + γ4 + tr(M1)+ tr(M2)}, (3.7)
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wherew(∙) = [ x(∙)> ξ(∙)> ]> andξ(t) = z(t) − T x(t) is the estimated error of the minimal-order
observer.

REMARK 3.1 Since (3.2) has a constraint of the inverse relations, an iterative algorithm via LMI
approach is introduced to solveEl Ghaouiet al. (1997).

Proof. Equations (2.1–2.3) and (2.6–2.8) yield the closed-loop system

[
ẋ(t)
ξ̇ (t)

]
=
[
Φ1 Φ2 Φ3
Φ4 Φ5 Φ6

]



x(t)

x(t − h(t))
ξ(t)



 , (3.8)

where

Φ1 = A +ΔA(t)+ (B +ΔB(t))K , Φ2 = Ad +ΔAd(t), Φ3 = (B +ΔB(t))K P,

Φ4 = −TΔA(t)− TΔB(t)K , Φ5 = −T(Ad +ΔAd(t)), Φ6 = D − TΔB(t)K P.

Further,consider a candidate of Lyapunov function as follows:

V(t) = V1(t)+ V2(t), (3.9)

where

V1(t) = w>(t)

[
S1 0
0 S2

]
w(t), V2(t) =

∫ >

t−h(t)
w>(t)

[
S3 0
0 S4

]
w(t)dt.

Thenthe time derivative of (3.9) along with (3.8) is calculated in the following equation:

V̇(t) = V̇1(t)+ V̇2(t), (3.10)

whereV̇1(t) andV̇2(t) are

V̇1(t) = ẇ>(t)

[
S1 0
0 S2

]
w(t)+ w>(t)

[
S1 0
0 S2

]
ẇ(t),

V̇2(t)=w>(t)

[
S3 0
0 S4

]
w(t)− (1 − ḣ(t))w>(t − h(t))

[
S3 0
0 S4

]
w(t − h(t))

6w>(t)

[
S3 0
0 S4

]
w(t)− (1 − d)w>(t − h(t))

[
S3 0
0 S4

]
w(t − h(t)),

respectively.
By introducingz̄(t) andΩ(t), (3.10) can be written as

V̇(t)= z̄>(t)Ω(t)z̄(t)− (x>(t)Qx(t)+ u>(t)Ru(t)), (3.11)

z̄(t) =







x(t)
x(t − h(t))

ξ(t)
ξ(t − h(t))





 , Ω(t) =







Ω1 Ω2 Ω3 0
Ω>

2 Ω4 Ω5 0

Ω>
3 Ω>

5 Ω6 0
0 0 0 Ω7





 ,
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Ω1 = S1(A +ΔA(t)+ (B +ΔB(t))K )+ (A +ΔA(t)

+ (B +ΔB(t))K )>S1 + S3 + Q + K >RK,

Ω2 = S1(Ad +ΔAd(t)),

Ω3 = −ΔA>(t)T>S2 − K >ΔB>(t)T>S2 − S1ΔB(t)R−1B>S1P,

Ω4 = −(1 − ḣ(t))S3,

Ω5 = −(Ad +ΔAd(t))
>T>S2,

Ω6 = S2D + D>S2 − S2TΔB(t)K P − P>K >ΔB>(t)T>S2

+ S4 + P>S1B R−1B>S1P,

Ω7 = −(1 − ḣ(t))S4.

Under the condition

Ω(t) < 0, (3.12)

(3.11) leads to

V̇(t) < −(x>(t)Qx(t)+ u>(t)Ru(t)) < 0, (3.13)

for anyx(t) 6= 0 and the closed-loop system is asymptotically stable.
Here, (3.12) is investigated below. By applying Fact2.2 to (3.12), it follows for anyζ > 0,

ε > 0, θ > 0,ω > 0,β > 0, δ > 0, λ > 0, μ > 0 andτ > 0 that

2x>(t)S1ΔA(t)x(t)= 2x>(t)S1DAFA(t)EAx(t)

6 ζ x>(t)S1DAD>
A S1x(t)+ ζ−1x>(t)E>

A EAx(t), (3.14)

− 2x>(t)S1ΔB(t)R−1B>S1x(t)= −2x>(t)S1DB FB(t)EB R−1B>S1x(t)

6 εx>(t)S1DB D>
B S1x(t)

+ ε−1x>(t)S1B R−1E>
B EB R−1B>S1x(t), (3.15)

2x>(t)S1ΔAd(t)x(t − h(t))= 2x>(t)S1DAdFAd(t)EAdx(t − h(t))

6 θx>(t)S1DAdD>
AdS1x(t)

+ θ−1x>(t − h(t))E>
AdEAdx(t − h(t)), (3.16)

− 2ξ>(t)S2TΔA(t)x(t)= −2ξ>(t)S2T DAFA(t)EAx(t)

6 ωξ>(t)S2T DAD>
A T>S2ξ(t)

+ω−1x>(t)E>
A EAx(t), (3.17)

2x>(t)S1B R−1ΔB>(t)T>S2ξ(t)= 2ξ>(t)S2T DB FB(t)EB R−1B>S1x(t)

6 βξ>(t)S2T DB D>
B T>S2ξ(t)

+β−1x>(t)S1B R−1E>
B EB R−1B>S1x(t), (3.18)
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− 2x>(t)S1ΔB(t)R−1B>S1Pξ(t)= −2x>(t)S1DB FB(t)EB R−1B>S1Pξ(t)

6 δx>(t)S1DB D>
B S1x(t)

+ δ−1ξ>(t)P>S1B R−1E>
B EB R−1B>S1Pξ(t), (3.19)

− 2x>(t − h(t))ΔA>
d (t)T

>S2ξ(t)= −2ξ>(t)S2T DAdFAd(t)EAdx(t − h(t))

6 λξ>(t)S2T DAdD>
AdT>S2ξ(t)

+ λ−1x>(t − h(t))E>
AdEAdx(t − h(t)), (3.20)

2ξ>(t)S2TΔB(t)R−1B>S1Pξ(t)= 2ξ>(t)S2T DB FB(t)EB R−1B>S1Pξ(t)

6μξ>(t)S2T DB D>
B T>S2ξ(t)

+μ−1ξ>(t)P>S1B R−1E>
B EB R−1B>S1Pξ(t), (3.21)

2ξ>(t)P>S1B R−1ΔB>(t)T>S2ξ(t)= 2ξ>(t)S2T DB FB(t)EB R−1B>S1Pξ(t)

6 τξ>(t)S2T DB D>
B T>S2ξ(t)

+ τ−1ξ>(t)P>S1B R−1E>
B EB R−1B>S1Pξ(t). (3.22)

Hence, ifthere exist positive scalarsζ , ε, θ , ω, β, δ, λ, μ andτ and symmetric positive-definite
matricesS1, S2, S3 andS4 which satisfy thefollowing matrix inequality:







Ω8 Ω9 0 0
Ω>

9 Ω10 Ω11 0
0 Ω>

11 Ω12 0
0 0 0 Ω13





 < 0, (3.23)

where

Ω8 = S1A + A>S1 − S1B R−1B>S1 + S3 + Q + ζS1DAD>
A S1 + (ζ−1 + ω−1)E>

A EA

+ (ε + δ)S1DB D>
B S1 + (ε−1 + β−1)S1B R−1E>

B EB R−1B>S1 + θS1DAdD>
AdS1,

Ω9 = S1Ad, Ω10 = −(1 − ḣ(t))S3 + (θ−1 + μ−1)E>
AdEAd, Ω11 = −A>

d T>S2,

Ω12 = S2D + D>S2 + S4 + ωS2T DAD>
A T>S2 + (β + μ+ τ)S2T DB D>

B T>S2

+ λS2T DAdD>
AdT>S2 + (δ−1μ−1 + τ−1)P>S1B R−1E>

B EB R−1B>S1P,

Ω13 = −(1 − ḣ(t))S4,

then (2.8) is a minimal-order observer-based guaranteed cost control law and (3.7) is a guaranteed cost
for the uncertain time-varying delay system (2.1–2.3).

Pre- and postmultiplying (3.23) by diag(S−1
1 , I , I , I ) on bothsides,denotingX = S−1

1 , Mx = S−1
3 ,

Y = S2L, ε̄ = ε−1, θ̄ = θ−1, ω̄ = ω−1, μ̄ = μ−1, τ̄ = τ−1, substitutingD = A11 + L A21 into (3.23)
andusing Schur complement lead to (3.2).
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Further, integrating (3.13) from 0 toT−→∞ yields

J =
∫ ∞

0
(x>(t)Qx(t)+ u>(t)Ru(t))dt

< x>(0)S1x(0)+ ξ>(0)S2ξ(0)+
∫ 0

−h(0)
x>(s)S3x(s)ds+

∫ 0

−h(0)
ξ>(s)S4ξ(s)ds = J∗,

(3.24)

whereJ∗ denotes the guaranteedcost. Here, we consider the optimal expected value of the guaranteed
cost. It is calculated as

E[ J∗] = trS1E[x(0)x>(0)] + trS2E[ξ(0)ξ>(0)]

+ trS3E

[∫ 0

−h(0)
x(s)x>(s)ds

]

+ trS4E

[∫ 0

−h(0)
ξ(s)ξ>(s)ds

]

. (3.25)

Substituting (2.5) into (3.25) and using Assumption2.2result in

E[ J∗] = trS1(Σ0 + m0m>
0 )+ trS2E[(z(0)− T x(0))(z(0)− T x(0))>]

+ trS3E

[∫ 0

−h(0)
x(s)x>(s)ds

]

+ trS4E

[∫ 0

−h(0)
ξ(s)ξ>(s)ds

]

. (3.26)

Here, it isreadily seen from (3.26) that

E[(z(0)− T x(0))(z(0)− T x(0))>] = TΣ0T> + (z(0)− T m0)(z(0)− T m0)
>, (3.27)

trS3E

[∫ 0

−h(0)
x(s)x>(s)ds

]

= trS3Ex E>
x , (3.28)

trS4E

[∫ 0

−h(0)
ξ(s)ξ>(s)ds

]

= trS4Fx F>
x . (3.29)

Next, considerpositive scalarsγ0, γ1, γ2, γ3, γ4, tr(M1) and tr(M2) satisfying the following inequalities:

trS1(Σ0 + m0m>
0 ) < γ0, (3.30)

trS2Σ11< γ1, (3.31)

trS2LΣ21< γ2, (3.32)

trS2Σ12L> < γ3, (3.33)

trS2LΣ22L> < γ4, (3.34)

trS3Ex E>
x < tr(M1), (3.35)

trS4Fx F>
x < tr(M2). (3.36)
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Minimizing γ0+γ1+γ2+γ3+γ4+ tr(M1)+ tr(M2) results in giving minE[ J∗]. By recallingtr(AB) =
tr(B A), (3.30–3.33) lead to (3.3) and (3.35–3.36) lead to (3.5) and (3.6), respectively. Next, by denoting
Σ

1/2
22 = [v1, v2, . . . , vm], (3.34) is calculated as

trS2LΣ22L> = v>
1 Y>S−1

2 Yv1 + v>
2 Y>S−1

2 Yv2 + ∙ ∙ ∙ + v>
mY>S−1

2 Yvm

= [ v>
1 Y> v>

2 Y> ∙ ∙ ∙ v>
mY> ]S−1

2








Yv1
Yv2
...

Yvm







< γ4. (3.37)

Further, Schurcomplement derives (3.4) from (3.37). �

REMARK 3.2 Minimizing theobserver gain in (3.32–3.34) is an important key to get less conservative
result than that of a full-order observer-based case. Otherwise, restriction on the observer gain form
and/or the stabilization formulations are needed, see, e.g.Mahmoud & Zribi(2003),Yu & Lien (2007)
andIshitobi & Miyachi (2008).

It is also noted that the inequalities (3.2) cannot be solved directly by LMI because they contain
the scalarsε, ε̄, θ , θ̄ , ω, ω̄ μ, μ̄, τ and τ̄ and matricesS1, X, S3 and Mx which satisfy therelation
S−1

1 X = I , S−1
3 Mx = I , ε−1ε̄ = 1, θ−1θ̄ = 1, ω−1ω̄ = 1, μ−1μ̄ = 1 andτ−1τ̄ = 1. There area

number of algorithms available in literature, a cone complementarity linearization approach (El Ghaoui
et al.,1997), a sequential linear programming matrix method (Leibfritz, 2001), a Min–Max algorithm,
an alternating projection method and so on to solve this kind of the problems. Here, we apply the cone
complementarity linearization approach and propose the algorithm as follows.

ALGORITHM

0: Setkmax, γmin andκ.

1: Choose asufficiently large initialγ such that there exists a feasible solution to LMI conditions
[

S1 I
I X

]
> 0,

[
S3 I
I Mx

]
> 0, γ0 + γ1 + γ2 + γ3 + γ4 + tr(M1)+ tr(M2) < γ,

εε̄ > 1, θθ̄ > 1, ωω̄ > 1, μμ̄ > 1, ττ̄ > 1, inequalities (3.2–3.6).

2.1: Setγ̄ = γ , k = 0, i = 1, S1(k) = S1, X(k) = X, S3(k) = S3, Mx(k) = Mx, ε(k) = ε, ε̄(k) = ε̄,
θ(k) = θ , θ̄ (k) = θ̄ , ω(k) = ω, ω̄(k) = ω̄, μ(k) = μ, μ̄(k) = μ̄, τ(k) = τ , τ̄ (k) = τ̄ .

2.2: Solve the following LMI problem:

tk = Min{tr[S1(k)X + X(k)S1 + S3(k)Mx + Mx(k)S3] + ε(k)ε̄ + εε̄(k)+ θ(k)θ̄ + θ θ̄(k)

+ω(k)ω̄ + ωω̄(k)+ μ(k)μ̄+ μμ̄(k)+ τ(k)τ̄ + τ τ̄ (k)}

subject to
[

S1 I
I X

]
> 0,

[
S3 I
I Mx

]
> 0, γ0 + γ1 + γ2 + γ3 + γ4 + tr(M1)+ tr(M2) < γ,

εε̄ > 1, θθ̄ > 1, ωω̄ > 1, μμ̄ > 1, ττ̄ > 1, inequalities (3.2–3.6).

http://imamci.oxfordjournals.org/


MINIMAL-ORDER OBSERVER-BASED GUARANTEED COST CONTROL 123

3.1: If k < kmax andtk > 4n + 10+ κ, then setk = k + 1 and go to 2.2.

3.2: If k 6 kmax, 4n + 10< tk 6 4n+ 10+ κ, LMI conditionsare satisfied andγ (0.5)i > γmin, then
γ̄ = γ̄ − γ (0.5)i . Else ifγ (0.5)i 6 γmin, then exit and γ̄ is an optimal value.

3.3: If k < kmax, 4n+ 10< tk 6 4n+ 10+ κ, LMI conditionsare not satisfied,i 6= 1 andγ (0.5)i >
γmin, thenγ̄ = γ̄ + γ (0.5)i . Else ifγ (0.5)i 6 γmin, then exit and γ̄ is an optimal value. Else if
i = 1, then exit and no optimal solution is obtained.

3.4: If k = kmax, tk > 4n + 10 + κ, i 6= 1 andγ (0.5)i > γmin, then γ̄ = γ̄ + γ (0.5)i . Else if
γ (0.5)i 6 γmin, then exit and γ̄ is an optimal value. Else ifi = 1, then exit and no optimal
solution is obtained.

4: Seti = i + 1 and return to 3.1.

REMARK 3.3 Weutilize an arbitrary increment±γ (0.5)i that leads thisalgorithm to the faster compu-
tation than algorithm ofChenet al. (2004) in finding an optimal value of guaranteed cost.

4. The relaxed time derivative of time-varying delay

This section is relevant for delay-dependent stability, while Section 3 considers delay-independent prob-
lem. In order to relax a constraint of time derivative of time-varying delay, LMI (3.2) in Theorem 3.1
shall be changed according toHeet al. (2007) by this inequality















∇1 X> Ad 0 0 ∇6 N1 N>
2 − N1

X ∇2 0 0 0 0 0 0
A>

d 0 ∇3 A>
d T>S2 0 ∇7 N2 0

0 0 S2T Ad ∇4 ∇5 ∇8 0 0
0 0 0 ∇>

5 −R 0 0 0
∇>

6 0 ∇>
7 ∇>

8 0 −(hS4)
−1 0 0

N>
1 0 N>

2 0 0 0 −h−1S4 0
N2 − N>

1 0 0 0 0 0 0 −I















+


















Δ1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 Δ2 0 0 0 0 0

0 0 0 Δ3 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


















< 0, (4.1)
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where

∇1 = AX + X A> − B R−1B>, ∇2 = −(N>
1 + N1 + S3 + Q)−1,

∇3 = −(1 − ḣ(t))S3 − N2 − N>
2 ,∇4 = S2D + D>S2, ∇5 = P>S1B,

∇6 = (A − B R−1B>S1)
>, ∇7 = A>

d , ∇8 = P>S1B R−1B>,

Δ1 = (ε1 + α1)DAD>
A + (ε2 + ε4 + α2 + α4)DB D>

B + (ε−1
2 + ε−1

6 )B R−1E>
B EB R−1B>

+ (ε3 + α3)DAdD>
Ad + (ε−1

1 + ε−1
5 )X E>

A EAX + α−1
2 S1B R−1E>

B EB R−1B>S1,

Δ2 = (ε−1
3 + ε−1

7 + α−1
3 )E>

AdEAd,

Δ3 = ε7S2T DAdD>
AdT>S2 + (ε6 + ε8)S2T DB D>

B T>S2

+ (ε−1
4 + ε−1

8 + α−1
4 )P>S1B R−1E>

B EB R−1B>S1P + ε5S2T DAD>
A T>S2.

One can seethatḣ(t) or d can be any value since∇3 also contains othernegative variable matrices even
though term−(1 − ḣ(t))S3 appears in it.

Proof. Using Leibniz–Newton formula

x(t)= x(t − h(t))+
∫ t

t−h(t)
ẋ(s)ds (4.2)

and substituting (4.2) into (2.1), then we get

ẋ(t)= (A +ΔA(t)+ (B +ΔB(t))K + Ad +ΔAd(t))x(t)

− (Ad +ΔAd(t))
∫ t

t−h(t)
ẋ(s)ds+ (B +ΔB(t))K Pξ(t). (4.3)

Considerthe Lyapunov function candidate for delay-dependent stability of uncertain time-varying delay
systems

V(t)= x>(t)S1x(t)+ ξ>(t)S2ξ(t)+
∫ t

t−h(t)
x>(s)S3x(s)ds

+
∫ t

t−h(t)

∫ t

s
ẋ>(θ)S4ẋ(θ)dθ ds. (4.4)

Time derivative of (4.4) is

V̇(t)= 2x>(t)S1ẋ(t)+ 2ξ>(t)S2ξ̇ (t)+ x>(t)S3x(t)− (1 − ḣ(t))x>(t − h(t))S3x(t − h(t))

+ hẋ>(t)S4ẋ(t)−
∫ t

t−h(t)
ẋ>(s)S4ẋ(s)ds. (4.5)

To obtaina less conservative stabilization criterion, the following term holds:

2[x>N1 + x>(t − h(t))N2] ×
[

x(t)− x(t − h(t))−
∫ t

t−h(t)
ẋ(s)ds

]
= 0, (4.6)
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whereN1 andN2 are free-weighting appropriatedimensioned matrices.
Adding (4.6) to (4.5) and considering a similar method to (3.11), we obtain a new upper bound of

(4.5):

V̇(t)6 2x>(t)S1[(A +ΔA(t)+ (B +ΔB(t))K )x(t)+ (Ad +ΔAd(t))x(t − h(t))+ (B +ΔB(t))K Pξ(t)]

+2ξ>(t)S2[−T(ΔA(t)+ΔB(t)K )x(t)− T(Ad +ΔAd(t))x(t − h(t))+ (D − TΔB(t)K P)ξ(t)]

+x>(t)S3x(t)− (1 − ḣ)x(t − h(t))S3x(t − h(t))

+h[(A +ΔA(t)+ (B +ΔB(t))K )x(t)+ (Ad +ΔAd(t))x(t − h(t))+ (B +ΔB(t))K Pξ(t)]>S4

×[(A +ΔA(t)+ (B +ΔB(t))K )x(t)+ (Ad +ΔAd(t))x(t − h(t))+ (B +ΔB(t))K Pξ(t)]

−
∫ t

t−h(t)
ẋ>(s)S4ẋ(s)ds+ 2[x>(t)N1 + x>(t − h(t))N2] ×

[
x(t)− x(t − h(t))−

∫ t

t−h(t)
ẋ(s)ds

]

+x>(t)Qx(t)+ (x(t)+ Pξ(t))>K>RK(x(t)+ Pξ(t))− [x>(t)Qx(t)+ u>(t)Ru(t)]. (4.7)

We cannote from (4.7) that

−
∫ t

t−h(t)
ẋ>(s)S4ẋ(s)ds− 2[x>N1 + x>(t − h(t))N2]

∫ t

t−h(t)
ẋ(s)ds

= −
∫ t

t−h(t)
([x>(s)N + ẋ>(s)S4]S−1

4 [N>x(s)+ S4ẋ(s)])ds+
∫ t

t−h(t)
(x>(s)N S−1

4 N>x(s))ds,

whereN> = [N>
1 N>

2 ]>.
BecauseS4 is positive, then the first term on the right-hand side must be negative, thus by introducing

p(t) andΩ̄(t), (4.7) can be rewritten as

V̇(t)= p>(t)Ω̄(t)p(t)− [x>(t)Qx(t)+ u>(t)Ru(t)], (4.8)

where

Ω̄(t)=




Ω̄1 Ω̄2 Ω̄3

Ω̄>
2 Ω̄4 Ω̄5

Ω̄>
3 Ω̄>

5 Ω̄6



 , p(t) =




x(t)

x(t − h(t))
ξ(t)



 ,

Ω̄1 = S1(A +ΔA(t)+ (B +ΔB(t))K )+ (A +ΔA(t)+ (B +ΔB(t))K )>S1 + S3

+h(A +ΔA(t)+ (B +ΔB(t))K )>S4(A +ΔA(t)+ (B +ΔB(t))K )+ N>
1 + N1 + Q

+K >RK + hN1S−1
4 N>

1 ,

Ω̄2 = S1(Ad +ΔAd(t))+ h(A +ΔA(t)+ (B +ΔB(t))K )>S4(Ad +ΔAd(t))+ N>
2 − N1,

Ω̄3 = S1(B +ΔB(t))K P − (ΔA(t)+ΔB(t)K )>T>S2 + h(A +ΔA(t)

+(B +ΔB(t))K )>S4(B +ΔB(t))K P + K >RK P,

Ω̄4 = −(1 − ḣ(t))S3 + h(Ad +ΔAd)
>S4(Ad +ΔAd)− N2 − N>

2 + hN2S−1
4 N2,

Ω̄5 = −(Ad +ΔAd(t))
>T>S2 + h(Ad +ΔAd)

>S4(B +ΔB(t))K P,

Ω̄6 = S2(D − TΔB(t)K P)+ (D − TΔB(t)K P)>S2 + h((B +ΔB(t))K P)>S4(B +ΔB(t))K P

+P>K >RKP.
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Under the conditionΩ̄(t) < 0, it is equivalent to the LMI below:








Ω̄7 Ω̄8 Ω̄9 Ω̄13

Ω̄>
8 Ω̄10 Ω̄11 Ω̄14

Ω̄>
9 Ω̄>

11 Ω̄12 Ω̄15

Ω̄>
13 Ω̄>

14 Ω̄>
15 −(hS4)

−1








+ hN S−1
4 N> < 0, (4.9)

where

Ω̄7 = S1(A +ΔA(t)+ (B +ΔB(t))K )+ (A +ΔA(t)+ (B +ΔB(t))K )>S1 + S3 + N>
1

+N1 + Q + K >RK,

Ω̄8 = S1(Ad +ΔAd(t))+ N>
2 − N1,

Ω̄9 = S1(B +ΔB(t))K P − (ΔA(t)+ΔB(t)K )>T>S2 + K >RK P,

Ω̄10 = −(1 − ḣ(t))S3 − N2 − N>
2 , Ω̄11 = −(Ad +ΔAd(t))

>T>S2,

Ω̄12 = S2(D − TΔB(t)K P)+ (D − TΔB(t)K P)>S2 + P>K >RK P,

Ω̄13 = (A +ΔA(t)+ (B +ΔB(t))K )>, Ω̄14 = (Ad +ΔAd(t))
>,

Ω̄15 = P>K >(B +ΔB(t))>.

Further, wecan decompose and rebuild (4.9) as follows:
















Ξ1 Ξ2 0
Ξ>

2 Ξ3 Ξ4

0 Ξ>
4 Ξ5




Π1 N1 N>

2 − N1
Π2 N2 0
Π3 0 0

Π>
1 Π>

2 Π>
3

N>
1 N>

2 0
N2 − N>

1 0 0

−(hS4)
−1 0 0

0 −h−1S4 0
0 0 −I













< 0, (4.10)

where

Ξ1 = S1(A +ΔA(t)+ (B +ΔB(t))K )+ (A +ΔA(t)+ (B +ΔB(t))K )>S1 + S3 + N>
1

+N1 + Q + K >RK,

Ξ2 = S1(Ad +ΔAd(t)), Ξ3 = −(1 − ḣ(t))S3 − N2 − N>
2 , Ξ4 = A>

d T>S2,

Ξ5 = S2(D − TΔB(t)K P)+ (D − TΔB(t)K P)>S2 + P>K >RK P,

Π1 = (A +ΔA(t)+ (B +ΔB(t))K )>, Π2 = (Ad +ΔAd(t))
>,

Π3 = P>K >(B +ΔB(t))>.

Applying Fact2.2 for uncertainties in (4.10), pre- and postmultiplying with diag(S−1
1 , I , I , I ) on both

sides ofthe upper left side decomposed matrix

Ξ =




Ξ1 Ξ2 0
Ξ>

2 Ξ3 Ξ4

0 Ξ>
4 Ξ5
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to get

Ξ̄ =




Ξ̄1 Ξ̄2 0
Ξ̄>

2 Ξ̄3 Ξ̄4

0 Ξ̄>
4 Ξ̄5



 ,

where

Ξ̄1 = (A +ΔA(t))X + X(A +ΔA(t))> + X − B R−1B> + X>(N>
1 + N1 + Q)X,

Ξ̄2 = (Ad +ΔAd(t)), Ξ̄3 = −(1 − ḣ)S3 − N2 − N>
2 , Ξ̄4 = Ξ4, Ξ̄5 = Ξ5

and using Schurcomplement, (4.10) leads to the new LMI (4.1). �

5. A full-order observer-based guaranteed cost approach

By following Ishitobi & Miyachi (2008), the result of the full-order observer-based guaranteed cost
approach for uncertain time-varying delay is introduced by Theorem5.1 and the feedback gain is
represented as

K = −R−1B> P1, (5.1)

whereP1 is a symmetricpositive-definite matrix.

THEOREM 5.1 Under Assumption2.1, if the following matrix inequalities optimization problem:
min{tr(M1)+ tr (M2)+ tr(M3)+ tr(M4)} subject to






















Ψ1 X> X E>
A Ad G>

1 0 0 0 0 0 0
X −(Mx + Q−1) 0 0 0 0 0 0 0 0 0

EAX 0 −α(1,5) I 0 0 0 0 0 0 0 0
A>

d 0 0 Ψ2 0 0 0 0 0 0 0
G1 0 0 0 Ψ3 P1B G>

2 R1DA R1DB R1DAd R1Ad

0 0 0 0 B> P1 −R 0 0 0 0 0
0 0 0 0 G2 0 −α(4,8) I 0 0 0 0
0 0 0 0 D>

A R1 0 0 −α−1
5 I 0 0 0

0 0 0 0 D>
B R1 0 0 0 −α−1

(6,8) I 0 0

0 0 0 0 D>
AdR1 0 0 0 0 −α−1

7 I 0
0 0 0 0 A>

d R1 0 0 0 0 0 −(1 − d)R2






















< 0,

(5.2)

[
−M1 Gx

G>
x −P−1

1

]
< 0, (5.3)

[
−M2 Hx

H>
x −R−1

1

]
< 0, (5.4)

[
−M3 Ex

E>
x −P−1

2

]
< 0, (5.5)
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[
−M4 Fx

F>
x −R−1

2

]
< 0, (5.6)

where

Ψ1 = AX + X A> − B R−1B> + α1DAD>
A + (α2 + α4)DB D>

B

+(α−1
2 + α−1

6 )B R−1E>
B EB R−1B> + α3DAdD>

Ad,

Ψ2 = −(1 − d)P2 + (α−1
3 + α−1

7 )EAdE>
Ad, Ψ3 = R1A + A>R1 − C> L̂ − L̂C + R2

α(1,5)= (α1 + α5), α(4,8) = (α4 + α8), α−1
(6,8) = (α−1

6 + α−1
8 ),

G1 =
√

2P1B R−1B>, G2 = EB R−1B> P1,

Gx = hIn, Hx = hIn, Ex = hIn, Fx = hIn,

has a setof solutionsP1 > 0, R1 > 0, P2 > 0, R2 > 0, Mx > 0, X > 0, α2 > 0, ᾱ2 > 0, α3 > 0,
ᾱ3 > 0, α5 > 0, ᾱ5 > 0, α8 > 0 andᾱ8 > 0, which satisfythe relationα−1

2 = ᾱ2, α−1
3 = ᾱ3,

α−1
5 = ᾱ5 andα−1

8 = ᾱ8, then thefull-order observer-based control law (5.8–5.9), (2.8) is a guaranteed
cost controller which gives the minimum expected value of the guaranteed cost

E[ J∗] = E

[

q>(0)

[
P1 0
0 R1

]
q(0)+

∫ 0

−h(0)
q>(s)

[
P2 0
0 R2

]
q(s)ds

]

= min{tr(M1)+ tr(M2)+ tr(M3)+ tr (M4)}, (5.7)

whereq(∙) = [ x(∙)> e(∙)> ]>.

Proof. Similar to that of minimal-order observer case, we obtain Theorem 5.1. The designed full-order
observer is formed by

˙̂x(t)= Ax̂(t)+ Adx̂(t − h(t))+ Bu(t)+ L(y(t)− ŷ(t)), (5.8)

ŷ(t)= Cx̂(t). (5.9)

Defineerror and time derivative of error, respectively, as

e(t)= x(t)− x̂(t), (5.10)

ė(t)= ẋ(t)− ˙̂x(t). (5.11)

Equations (2.1–2.3) and (5.8–5.11) result in the closed-loop system

[
ẋ(t)
ė(t)

]
=
[
Φ1 Φ2 Φ3 0
Φ4 Φ5 Φ6 Φ7

]






x(t)
x(t − h(t))

e(t)
e(t − h(t))





 , (5.12)

where

Φ1 = A +ΔA(t)+ (B +ΔB(t))K , Φ2 = Ad +ΔAd(t), Φ3 = (B +ΔB(t))K ,

Φ4 =ΔA(t)+ΔB(t)K , Φ5 = ΔAd(t), Φ6 = A −ΔB(t)K − LC, Φ7 = Ad.
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Consider the Lyapunov function

V = q>(t)

[
P1 0
0 R1

]
q(t)+

∫ >

−h(t)
q>(t)

[
P2 0
0 R2

]
q(t)dt. (5.13)

Using thetimederivative of (5.13) along with (5.12) and introducinḡzf (t) andΩ f (t) result in

V̇(t)= z̄>
f (t)Ω f (t)z̄ f (t)− (x>(t)Qx(t)+ u>(t)Ru(t)), (5.14)

where

z̄ f (t) =







x(t)
x(t − h(t))

e(t)
e(t − h(t))





 , Ω f (t) =








Ω f 1 Ω f 2 Ω f 3 0
Ω>

f 2 Ω f 4 Ω f 5 0

Ω>
f 3 Ω>

f 5 Ω f 6 Ω f 7

0 0 Ω>
f 7 Ω f 8







,

Ω f 1 = P1(A +ΔA(t)+ (B +ΔB(t))K )+ (A +ΔA(t)+ (B +ΔB(t))K )> P1 + P2 + Q + K >RK,

Ω f 2 = P1(Ad +ΔAd(t)), Ω f 3 = −P1(B +ΔB(t))K + (ΔA(t)+ΔB(t)K )>R1 + K >RK,

Ω f 4 = −(1 − ḣ(t))P2, Ω f 5 = ΔA>
d R1,

Ω f 6 = (A −ΔB(t)K − LC)>R1 + R1(A −ΔB(t)K − LC)+ R2 + K >RK,

Ω f 7 = R1Ad, Ω f 8 = −(1 − ḣ(t))R2.

Under similar conditionwith (3.12), (5.14) leads to (3.13) for anyx(t) 6= 0 and the closed-loop system is
also asymptotically stable. Further, applying Fact (2.2), pre- and postmultiplying with diag(P−1

1 , I , I , I )

and lettingP−1
1 = X, L̂ = R1L yield

Ω f (t) =








Ω f 9 Ω f 10 Ω f 11 0

Ω>
f 10 Ω f 12 0 0

Ω>
f 11 0 Ω f 13 Ω f 14

0 0 Ω>
f 14 Ω f 15







< 0, (5.15)

Ω f 9 = X A> + AX − B R−1B> + X>(P2 + Q)X + α1DAD>
A + (α−1

1 + α−1
5 )X E>

A EAX

+(α−1
2 + α−1

6 )B R−1E>
B EB R−1B> + (α2 + α4)DB D>

B + α3DAdD>
Ad,

Ω f 10 = Ad, Ω f 11 = 2B R−1B−1P1, Ω f 12 = −(1 − ḣ(t))P2 + (α−1
3 + α−1

7 )E>
AdEAd,

Ω f 13 = A>R1 + R1A − C> L̂>− L̂C + R2 + P1B R−1B> P1+ (α−1
4 + α−1

8 )P1B R−1E>
B EB R−1B> P1

+α5R1DAD>
A R1 + α7R1DAdD>

AdR1 + (α6 + α8)R1DB D>
B R1,

Ω f 14 = R1Ad, Ω f 15 = −(1 − ḣ(t))R2.

By using Schurcomplement, (5.15) is equivalent to (5.2).
Next, the optimal expected guaranteed cost is calculated as

E[ J∗] = trP1E[x(0)x>(0)] + trR1E[e(0)e>(0)] + trP2E

[∫ 0

−h(0)
x(s)x>(s)ds

]

+trR2E

[∫ 0

−h(0)
e(s)e>(s)ds

]

. (5.16)
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From (5.16), one can easily see that

trP1E[x(0)x>(0)] = trP1GxG>
x < tr(M1), (5.17)

trR1E[e(0)e>(0)] = trR1Hx H>
x < tr(M2), (5.18)

trP2E

[∫ 0

−h(0)
x>(s)x(s)ds

]

= trP2Ex E>
x < tr(M3), (5.19)

trR2E

[∫ 0

−h(0)
e>(s)e(s)ds

]

= trR2Fx F>
x < tr(M4). (5.20)

Equations (5.17–5.20) are equivalent to (5.3–5.6). �

6. An illustrative example

Consider a system (2.1–2.3) with

A =







−3 0 −2 0
0 −2 0 −1
1 0 0 0
0 1 0 0





 , B =







3
2

−6
1





 , C = [ O2 I2 ], m(0)= 04,

Σ(0)= I4, R = 9, Q = diag(7,15,1,3), DA =
[

0.1I2 O2
O2 O2

]
, EA =

[
0.3I2 0.3I2
O2 O2

]
,

DB = diag(0.3,0.1,0.3,0.1), EB =
[
1 −1 1 −1

]>
,

Ad = 0.05A, DAd = 0.01DA, EAd = 0.01EA, h(0)= h = 0.5, d = 0.35.

• Case(I )
Applying the minimal-order observer-based approach withkmax=1000,γmin=0.0001,κ=0.0001
and initialγ = 100, weobtain a solution

L =
[
−0.1019 −0.0957
−0.0783 −0.1401

]
, K = [ −0.4018 −0.4517 0.5557 −0.5088],

Em =
[
−2.3234 −0.3102
−0.1756 −1.3073

]
, W =







0.1019 0.0957
0.0783 0.1401
1.0000 0

0 1.0000





 , γ̄ = E[ J∗] = 18.9276.

In the iterations1–158 of Fig.1, γ̄ does not vary and be kept to the initialγ because the feasible
solution is searched. After that, this algorithm optimizes the guaranteed cost candidate. Figures2
and3 depict trajectories of states and estimate errors withx(0) = [−1,2,3,−2]>, x(−h(0)) =
[1,−2,−3,2]> andFA(t) = FAd(t) = FB(t) = I .
Case (I a). For the relaxed constraint of time derivative of time-varying delay, two casesd < 1
andd > 1 are provided. Replacing LMI in (3.2) by (4.1), a controller gain, an observer gain and an
expected value of guaranteed cost, respectively, are

K = [ 0.0002 −0.0018 0.0065 −0.0021], L =
[
−0.0458 0.0120
0.0116 −0.2345

]
, γ̄ = E[ J∗] = 0.0681.
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FIG. 1. Trajectories of the guaranteed cost. The marks××× show that a feasible solution cannot be obtained for the guaranteed cost
candidateγ̄ and the optimal performance index is greater than×××.

FIG. 2. Trajectories of statesx1(—), x2(∙ ∙ ∙ ), x3(- -) andx4(– –).

FIG. 3. Trajectories of estimate errorsξ1(—) andξ2(- -).

For h = 1.5 andd = 1.1, we obtain

K = [ −0.0009 −0.0013 0.0037 −0.0010], L =
[
−0.1623 0.0017
0.0023 −0.2362

]
, γ̄ = E[ J∗] = 0.0658.

• Case(I I )
By the full-order observer-based approach, the obtained observer and controller gain for uncertain
time-varying delay system (2.1–2.3) are
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L f = 1024 ×







−0.5528 0.1757
0.1187 −0.4753
1.4625 −0.4577

−0.4577 1.6177





 , K f = [ −0.0218 −0.0080 2.8922 −1.3604].

Note that the observer gain is extremely large so that a practical difficulty is remained.

7. Conclusions

This paper discusses a guaranteed cost controller design with a minimal-order observer for uncertain
time-varying delay systems. A sufficient condition for the existence of state feedback guaranteed cost
controllers is derived on the basis of the LMI feasible solutions. The optimal cost control is provided by
minimizing the upper bound of the guaranteed cost control. To show the advantage of a minimal-order
observer-based guaranteed cost controller, the problem of a full-order observer-based case is also treated
as comparison. A numerical example is given to illustrate the proposed method.
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