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1 Introduction 

Considerable attention to the problem in robust stability 
analysis and robust stabilisation of uncertain systems has 
been attracting many authors for several last decades, e.g., 
(Chang and Peng, 1972; Petersen and McFarlane, 1994; 
Sato et al., 2008) and references therein. These uncertainties 
occur and may be caused by unknown noises, 
environmental effects and change of parameters. There has 

been much effort to design a controller which not only 
achieves the stability of the uncertain system but also 
guarantees an adequate level of performance. One approach 
to this problem is the guaranteed cost control method via 
linear matrix inequality (LMI) technique (Lien, 2004; Won 
and Park, 1999), which is a powerful tool in the control 
theory and applications in recent years (Matsuo et al., 2008). 
Moreover, the guaranteed cost control approach has been 



244 E. Susanto et al.  

recently extended to the time-delay systems (Chen et al., 
2004; Esfahani and Petersen, 1998). 

Though the controller is usually constructed by using 
state variables, it may not be possible to measure all the 
states of the system in many cases due to cost problems, 
difficulties in measurement and uncertainty perturbations. 
Thus, the observer-based control is probably well suited and 
better than the state control feedback in such situations. In 
addition, the problem of designing an observer-based 
guaranteed cost controller has received some attention in 
recent years (Lien, 2005). Therefore, we consider a state 
observer because of its ability to reconstruct the state of a 
dynamic system. In the observer-based guaranteed cost 
control problem, finite solutions cannot be usually obtained 
because the loss of the cost depends on the unknown initial 
state variables as well as the case without uncertainties 
(Miller, 1973). The work of Mahmoud and Zribi (2003) 
implicitly needs an initial value of the states and error states 
to obtain the guaranteed cost value. Instead of this, we 
assume that their mean and covariance are known. This 
approach is theoretically more acceptable for systems with 
an observer and has more practical sense. 

Further, the restriction on the form of the observer gain 
matrix should be used in the guaranteed cost controllers 
with a full order observer. We can see the restriction from 
those of Mahmoud and Zribi (2003), Won and Park (1999), 
and Lien (2005). Otherwise, they may have some poles with 
an infinitely small negative real parts when the observer 
gain is left free (Ishitobi and Miyachi, 2008). Our study 
does not put the restriction on the form of the observer  
gain. Firstly, we design a minimal order observer-based 
guaranteed cost controller and extend it to a full order 
observer-based without any restriction to the observer gain 
matrix of the minimal order observer-based, but it is left 
free. 

Since inverse relations of variables appear, this paper 
concerns a design method of a full order observer-based 
guaranteed cost controller via an iterative linear matrix 
inequality (ILMI) technique such that a feasible solution to 
the convex LMI problems will be achieved iteratively. An 
assumption on the statistical properties of the unknown 
initial state variables for a full order observer-based 
guaranteed cost problem is used. 

Outline of this paper is as follows. Section 2 states the 
problem of a continuous time uncertain system with 
statistical properties. Section 3 provides the main results in 
LMI formulations, involving an observer-based controller 
design algorithm. Section 4 gives a numerical example to 
illustrate the proposed method and finally, Section 5 
presents the conclusion of this work. 

2 Problem statement 

Consider the following continuous-time uncertain system of 
the form 

( ) ( )( ) ( ) ( )( ) ( )t t tA A t B B t= ++ Δ + Δx x u  (1) 

( ) ( )t C t=y x  (2) 

where x(t) ∈ ℜn is the state vector, u(t) ∈ ℜr is the control 
input vector, y(t) ∈ ℜm is the measured output vector, A, B, 
C are known constant real-valued matrices with appropriate 
dimensions, and C is restricted to the form of C = [O Im]. 
Matrices ΔA(t) and ΔB(t) denote real-valued matrix 
functions representing parameter uncertainties in the system 
state and input. It is assumed that the uncertain matrices are 
represented by 

( ) ( ) , ( ) ( )A A A B B BA t D F t E B t D F t EΔ = Δ =  (3) 

with relations satisfying 

( ) ( ) , ( ) ( )T T
A A B BF t F t I F t F t I≤ ≤  

where DA, DB, EA, EB are constant real-valued known 
matrices with appropriate dimensions, and FA(t) and FB(t) 
are real-time-varying unknown continuous and deterministic 
matrices. The assumption above on FA and FB leads to the 
adoption of a constant Lyapunov function below though the 
result may be conservative. 

We further assume that the initial state variable x(0) is 
unknown, but their mean and covariance are known, 
equivalently (Miller, 1973) 

[ ] 0(0)E = mx  (4) 

( )( ) 00 0(0) (0) TE O⎡ ⎤ = Σ >− −⎣ ⎦x m x m  (5) 

where E[⋅] denotes the expected value operator. 
The problem considered here is to design a full order 

observer 

( )ˆ ˆ( ) ( ) ( ) ( )o ot A K C t B t K t= − + +x x u y  (6) 

and a controller 

ˆ( ) ( )t K t= −u x  (7) 

so that achieving an upper bound on the following quadratic 
performance index 

( )
0

[ ] ( ) ( ) ( ) ( )T TE J E dtt Q t t R t
∞⎡ ⎤= +⎢ ⎥⎣ ⎦∫ x x u u  (8) 

associated with the uncertain system (1) and (2) where Q 
and R are given symmetric positive-definite matrices. 

3 Main results 

In this section, a sufficient condition is established for the 
existence of a full order observer-based guaranteed cost 
controller for the uncertain systems (1) and (2). The 
introduction of the restriction on the feedback controller 
gain matrix in the form below results in the formulations of 
the algorithm with LMIs. 

1
1

TK R B S−=  (9) 
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where S1 is a symmetric positive-definite matrix. Further, 
we assume that 

0ˆ (0) 0− =x m  (10) 

The main result of this study is given by Theorem 1. 

Theorem 1: If the following matrix inequalities optimisation 
problem; min {γ1 + γ2} subject to 

1
1 0 0 0

0 0
0 0

T T T
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X XE XE

X Q
E X I
E X I

δ

−
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−⎢ ⎥ <⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦ε

 (11) 
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=
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has a solution S1 > 0, S2 > 0, X > 0, L, δ > 0, 
0,  0,  0,  0,  0,  0,  0,  0,inv inv inv invμ ω τ τ ρ ρ> > > > > > > >ε ε  

γ1, γ2 which satisfy the relation 1 1,  ,inv invτ τ− −= =ε ε   

ρ–1 = ρinv and 1
1 ,S X− =  then the full order observer-based 

control law (7) with (9) is a guaranteed cost controller 
which gives the minimum expected value of the guaranteed 
cost 

[ ] 1 2(0) (0) (0) (0)T TE E S SJ ∗ ⎡ ⎤= +⎣ ⎦x x e e  (15) 

where ˆ( ) ( ) ( )t t t= −e x x  is the estimated error of the full 
order observer. 

Remark 1: Since (11) and (12) have a constraint of the 
relationship of the inverse, ILMI approach is introduced to 
solve the problem (Ghaoui et al., 1997; Cao et al., 1998). 

Before giving a proof of Theorem 1, a key lemma is 
introduced. 

Lemma 1 (Mahmoud and Zribi, 2003): Let D and E be 
matrices of appropriate dimensions, and F be a matrix 
function satisfying FTF ≤ I. Then for any positive scalar α, 
the following inequality holds 

1 .T T T T TDFE E F D DD E Eα α−+ ≤ +  (16) 

Proof of Theorem 1: 

Equations (1), (6) and (7) yield the closed-loop system 

1 2

3 4

( ) ( )
( ) ( )
t t
t t

Φ Φ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥Φ Φ⎣ ⎦ ⎣ ⎦⎣ ⎦

x x
e e

 (17) 

where 

( )
( )

1

2

3

4

( ) ( )

( )
( ) ( )

( )o

A A t KB B t
KB B t

A t B t K
A K C B t K

Φ = + Δ + + Δ

Φ = + Δ

Φ = −Δ −Δ
Φ = − − Δ

 

Although we can see from (1) and (2) that the system is time 
varying, according to (3), it is sufficient to define a 
candidate of Lyapunov function as 

1 2( ) ( ) ( ) ( ) ( )T TV t t S t t S t= +x x e e  (18) 

Then, the time derivative of (18) along to (17) is calculated 
as 

( )( ){
( ) }

( ){
( ) }

( )

1 2

1

2

( ) 2 ( ) ( ) 2 ( ) ( )

2 ( ) ( ) ( ) ( )

( ) ( ) ( )

2 ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T T

T

o

T T T

V t t S t t S t

t S A A t B B t K t

A t B t K t

t S A t B t K t

A K C B t K t

z t z t t Q t t R t

= +

= + Δ + + Δ

+ −Δ − Δ

+ −Δ − Δ

+ − −Δ

= Ω − +

x x e e

x x

e

e x

e

x x u u

 (19) 

where 

1 2

2 3

( )
( ) ,

( ) T

t
z t

t
⎡ ⎤Λ Λ⎡ ⎤

= Ω = ⎢ ⎥⎢ ⎥
Λ Λ⎣ ⎦ ⎢ ⎥⎣ ⎦

x
e

 



246 E. Susanto et al.  

( ) ( )

( ) ( )

1 1 1
1 1

1 1 1 1
1

1 1
1

2 2 1 1
1

1 2

1
3 2 2 1 1

1 1
2 1 1 2

( ) ( )

( )

T

T T

T

T T

T

T T
o o

T T

S S QA A t A A t

S BR B S S BR B S

S BR B S

A t S S BR B S

S BR B S

S A K C A K C S S BR B S

S BR B S S BR B S

− −

−

−

−

−

− −
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− Δ

Λ = −Δ − Δ

+ Δ
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+ Δ + Δ

 

Under the condition 

0Ω <  (20) 

equation (19) leads to 

( )( ) 0( ) ( ) ( ) ( )T TV t t Q t t R t< − <+x x u u  (21) 

for any x(t) ≠ 0 and the closed-loop system is asymptotically 
stable. 

Next, the condition (20) is investigated below. By 
applying Lemma 1 to (20), it follows for any 0,  0,δ > >ε  

0,  0,  0ρ μ ω> > >  and τ > 0 that 

1 1
1

1 1

2 ( ) ( ) ( ) 2 ( ) ( ) ( )

( ) ( ) ( ) ( )

T T
A A A

T T T
A A A A

t S A t t t S D F t E t

t S D D S t t E E tδ δ −

Δ =

≤ +

x x x x

x x x x
 (22) 

2 2
1

2 2

2 ( ) ( ) ( ) 2 ( ) ( ) ( )

( ) ( ) ( ) ( )

T T
A A A

T T T T
A A A A

t S A t t t S D F t E t

t S D D S t t E E t−

− Δ = −

≤ +ε ε

x x x x

e e x x
 (23) 
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( ) ( )
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T T

T T
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T T
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x x

x x

x x

x x
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 (27) 

Hence, if there exist scalars 0,  0,  0,  0,δ ρ μ> > > >ε   
τ > 0, a matrix Ko, symmetric positive-definite matrices S1 
and S2 which satisfy the following matrix inequality 

4
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then (7) is a full order observer-based guaranteed cost 
control law and (15) is a guaranteed cost for the uncertain 
system (1) and (2). 

In this paper, a full order observer is constructed by an 
output estimator and a minimal order observer that estimates 
the state variables except for the outputs (Telford and 
Moore, 1989). 

An output estimator is given by 

( ) ( )ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )mt C A t B t t t= + −Λ −y x u y y  (29) 

where Λ is a stable matrix with specified eigenvalues, and a 
minimal order observer is designed by 

ˆ ˆ ˆ( ) ( ) ( ) ( )t A t B t L t= + +w w u y  (30) 

ˆ ˆˆ ( ) ( ) ( )m t C t D t= +x w y  (31) 

where 

ˆ ˆ
oA F AC=  (32) 

0B̂ F B=  (33) 

ˆ
0
I

C ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (34) 

ˆ L
D

I
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (35) 

[ ]0F I L=  (36) 

ˆ ˆ
oL F AD=  (37) 

and w(t) is an estimate of Fox(t). 
Here, the following relations have to be satisfied 

ˆ ˆ
o oF A AF LC= +  (38) 

ˆ ˆ
o nCF DC I+ =  (39) 

0
ˆ ˆK AD D= − Λ  (40) 

( ) ˆ
oC A K C DΛ = −  (41) 
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Then, it is obtained that 

ˆ
mCD I=  (42) 

ˆ
o n mF C I −=  (43) 

( )
ˆ

m n mCC O × −=  (44) 

( )
ˆ

o n m mF D O − ×=  (45) 

( )

ˆ ˆˆ ˆ( ) ( ) ( )
ˆˆ ˆ( ) ( ) ( )m

t C t D t

t D t t

= +

= + +

x w y

x y y
 (46) 

From (32) to (45), the matrix A – KoC is re-expressed as 
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Pre- and post-multiplying (28) by 1
1( ,  )diag S I−  on both 

sides, denoting 1 1 1 1
1 ,  ,  ,  ,inv inv invX S τ τ ρ ρ− − − −= = = =ε ε  

substituting (47) into (28) and using Schur complement 
(Boyd et al., 1994), lead to (11) and (12). 

Further, integrating (21) from 0 to T yields 
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1 2
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− +
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x x e e

x x e e

x x u u

 (48) 

Here, the asymptotic stability of the closed-loop system 
implies that 

1 1( ) ( ) 0, ( ) ( ) 0T TT S T T S T← →x x e e  (49) 

as T tends to the infinity. Hence, it is obtained that 

( )
0

1 2
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(0) (0) (0) (0)
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T T

J dtt Q t t R t

S S
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∞
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< +

=

∫ x x u u

x x e e  (50) 

where J∗ denotes the guaranteed cost. Here, we consider the 
optimal expected value of the guaranteed cost. It is 
calculated as 

[ ] 1 2

1 2

1 2

(0) (0) (0) (0)

tr (0) (0) tr (0) (0)

tr tr(0) (0) (0) (0)

T T
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x x e e

x x e e

x x e e

 (51) 

A relation between mean and covarience of x(0) is given by 

( )0 0 0(0) (0) TTEΣ = −m mx x  (52) 

Substituting (52) into (51) yields 

[ ] ( )
( )( ){ }

1 0 0 0

1 0 0 0

tr

tr ˆ ˆ(0) (0)

T

T

E SJ

S

∗ = Σ +

+ Σ + − −

m m

x m x m
 (53) 

Then substituting (10) into (53) yields 

[ ] ( )1 2 00 0 0tr trTE S SJ ∗ = + ΣΣ +m m  (54) 

Here, we consider positive scalars γ1 and γ2 satisfying the 
following inequalities 

( )1 10 0 0tr TS γ<Σ +m m  (55) 

2 0 2trS γΣ <  (56) 

Minimising γ1 + γ2 results in giving min E[J∗]. By recalling 
tr(AB) = tr(BA), (55) and (56) lead to (13), (14). Q.E.D. 

It is noted that the inequalities (11) and (12) cannot be 
solved directly by LMI because they contain the scalars ,ε  

,  ,  ,  ,  inv inv invτ τ ρ ρε  and two matrices S1, X which have to 

satisfy the relation 1 1 1 1
1 ,  ,  ,  inv inv invS X τ τ ρ ρ− − − −= = = =ε ε  

and the two matrices S2 and L  that have to be kept constant 
one by one. Using an ILMI approach means that every 
computation which has to solve a minimisation problem 
keeps all obtained matrices and scalar variables as initial 
values for the next iterations. For the first restriction, there 
are a number of algorithms available in literature, a cone 
complementarity linearisation approach (Ghaoui et al., 
1997), a sequential linear programming matrix method 
(SLPMM) (Leibfritz, 2001), a Min-Max algorithm, an 
alternating projection method and so on to solve this kind of 
the problems. Here, we apply the cone complementarity 
linearisation approach. For the second restriction, the index 
γ1 + γ2 is minimised by iteration with keeping one of S2 and 
L  constant alternately. 

An algorithm is shown in the following steps. 

1 Design a minimal order observer-based guaranteed cost 
controllers, get an optimal guaranteed cost γminobs and 
set the obtained gain as Lfix (Matsunaga et al., 2009). 

2 Design a guaranteed cost controller with a full order 
observer under a fixed L  for γ(k) where γ(1) is 
appropriately given, when k = 1, 2, ⋅⋅⋅. 
2.1 Solve a convex problem 
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1
1 20, ( ), 0,

0, 0, inequalities (11) to (14),

inv

inv inv

S I
k

I X
γ γ γ

ττ ρρ

⎡ ⎤
> + < >⎢ ⎥

⎣ ⎦
> >

εε
 

with 

fixL
L

O

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

If infeasible, then go to Step 4 with 
( 1)( 2)k kγ γ= − ≥  

Else set 

1 1(0) , (0) ,  (0) , (0) ,
, (0) ,  (0) , (0) .

inv inv

inv inv inv inv

S S X X
ρ ρ ρ ρ

= = = =

= = =

ε ε ε ε
(0)=τ τ τ τ

 

2.2 When j = 1, 2, ⋅⋅⋅, solve a minimisation problem 
of α by LMI under 

1
1 20, ( ), 0,

0, 0,

inv

inv inv

S I
k

I X
γ γ γ

ττ ρρ

⎡ ⎤
> + < >⎢ ⎥

⎣ ⎦
> >

εε
 

1 1tr[ ( ) ( ) ] ( ) ( ) ...inv invS j X X j S j j+ + + +ε ε εε   
τ(j) τinv + ττinv(j) + ρ(j)ρinv + ρρinv(j) < α, 
inequalities (11) to (14), and set S1(j) = S1, 

( ) ,  ( ) ,  ( ) ,  ( ) ,inv inv invX j X j j jτ τ= = = =ε ε ε ε  
τinv, ρ(j) = ρ, ρinv(j) = ρinv. 

2.3 If α satisfies 2n + 6 < α < 2n + 6 + κ1 for some 
small κ1, then go to Step 3 with ( ) ( )k k γγ γ δ= −  

where δγ > 0 is some small constant, else go to 
Step 2.4. 

2.4 If j < N where N > 0 is some large integer, then 
go to Step 2.2, else go to Step 4 with γ = γ(k). 

3 Design a guaranteed cost controller with a full order 
observer under a fixed S2 for ( ),kγ  when k = 1, 2, ⋅⋅⋅. 

3.1 Solve a convex problem 

1
1 20, ( ), 0,

0, 0, inequalities (11) to (14),

inv

inv inv

S I
k

I X
γ γ γ

ττ ρρ

⎡ ⎤
> + < >⎢ ⎥

⎣ ⎦
> >

εε
 

If infeasible, then go to Step 4 with γ = γ(k), else 
set 1 1(0) ,  (0) ,  (0) ,  (0) ,inv invS S X X= = = =ε ε ε ε  

(0) ,  (0) ,  (0) ,  (0) .inv inv inv invτ τ τ τ ρ ρ ρ ρ= = = =  

3.2 When j = 1, 2, ⋅⋅⋅, solve a minimisation problem 
of α by LMI under 

1
1 20, ( ), 0,

0, 0,

inv

inv inv

S I
k

I X
γ γ γ

ττ ρρ

⎡ ⎤
> + < >⎢ ⎥

⎣ ⎦
> >

εε
 

1 1tr[ ( ) ( ) ] ( ) ( ) ...inv invS j X X j S j j+ + + +ε ε εε   
τ(j)τinv + ττinv(j) + ρ(j)ρinv + ρρinv(j) < α, 
inequalities (11) to (14), and set S1(j) = S1, 

( ) ,  ( ) ,  ( ) ,  ( ) ,inv inv invX j X j j jτ τ= = = =ε ε ε ε  
τinv(j) = τinv, ρ(j) = ρ, ρinv(j) = ρinv. 

3.3 If α satisfies 2n + 6 < α < 2n + 6 + κ2  
for some small κ2, then go to Step 2 with 

( 1) ( ) ,k k γγ γ δ+ = −  else go to Step 3.4. 

3.4 If j < N, then go to Step 3.2, else go to Step 4 
with ( ).kγ γ=  

4 End with 1 1 2( ),  ,  ( ),  ( ),  ( ),invS S j S X X j j j= = = =ε ε ε ε  
( ),  ( ),  ( ),  ( ),  ,  ,inv inv inv invj j j j Lτ τ τ τ ρ ρ ρ ρ γ= = = =  

γ1, γ2. 

Note that N in Steps 2.4 and 3.4 is the threshold to decide 
the solvability of the minimisation problems. Namely, this 
means that there is no solution satisfying γ(k) or ( ).kγ  Note 
also that γ(1) is needed to choose the value such that the 
algorithm can go to Step 3. We determine a sufficiently 
large γ(1) such that there exists a feasible solution. To 
simplify, we use a twice of optimal guaranteed cost value 
obtained in the design of a minimal order observer-based 
guaranteed cost controller. 

4 An illustrative example 

This section verifies the proposed method by providing a 
numerical example solved by LMI control toolbox of 
MATLAB. Consider a system (Inoue, 1977) with 

[ ] 0 4 0 42 2

2 2

2 2

2 2

2 2

3 0 2 0 3
0 2 0 1 2

, ,
1 0 0 0 6
0 1 0 0 1

, , , 9,

0.1
(7, 15, 1, 3), ,

0.3 0.3 50 0
, ,

0 30

1
1

(0.3, 0.1, 0.3, 0.1),
1
1

A

A

B B

A B

C I RO I

I O
Q diag D

O O

I I
E

O O

D diag E

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

= = Σ = =

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
−⎡ ⎤ ⎡ ⎤

= Λ =⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦
⎡ ⎤
⎢ ⎥−⎢= =
⎢
⎢
−⎣ ⎦

0m

.⎥
⎥
⎥

 

Applying Theorem 1 with γ(1) = 33.7786, we obtain a 
solution 
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1

2

1.1251 0.1384 0.0591 0.1487
0.1384 4.6164 1.2272 1.7050

,
0.0591 1.2272 1.4415 1.3071
0.1487 1.7050 1.3071 8.2134

0.4520 0.6661 0.1467 0.0592
0.6661 1.0182 0.2013 0.1254
0.1467 0.2013 0.0764 0.0288
0.059

S

S

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

− −
− −

=
− − −
−

,

2 0.1254 0.0288 0.0973

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎣ ⎦

 

0.8929 0.0203 0.0099 0.0104
0.0203 0.2844 0.2198 0.0237

,
0.0099 0.2198 0.9813 0.1104
0.0104 0.0237 0.1104 0.1444

4.9249, 0.2030, 0.9552,
1.0469, 4.3247, 0.2312

0.1840 0.0433
0

inv

inv inv

X

L

ρ
ρ τ τ

− − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥
− − −⎣ ⎦

= = =

= = =

=

ε ε

[ ]
[ ]

.0070 0.2483
,

0 0
0 0

,0.3830 0.4433 0.5234 0.4697

17.0408.

K

E Jγ ∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= − − −

= =

 

All closed-loop poles are calculated for FA = FB = I as  
–5.4457, –0.9828, –1.000, and –3.4451. For the initial 
values of the system state variables and the observer state 
variables are set as x(0) = [–1 2 3 –2]T and ˆ(0) [0 0 0 0] ,T=x  
simulation results are shown in Figures 1 to 4. The 
trajectories converge to the origin. Figure 5 depicts the 
trajectory of the guaranteed cost γ. 

Figure 1 Trajectories of states x1(···), x2(—), x3(– - –) and x4(– –) 
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Figure 2 Trajectories of errors e1(···), e2(—), e3(– - –) and e4(– –) 
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Figure 3 Trajectories of outputs y1(—) and y2(· · · ) 
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Figure 4 Trajectory of input 
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Figure 5 Trajectory of γ 
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5 Conclusions 

This paper discusses a full order observer-based guaranteed 
cost control problem. A sufficient condition for the 
existence of state feedback guaranteed cost controllers is 
derived to determine the stability on the LMIs term. A 
numerical example with simulation results is given to 
illustrate the proposed method. 
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